engine.py 19.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20 21
import platform
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
22
from paddle import nn
D
dongshuilong 已提交
23 24
import numpy as np
import random
D
dongshuilong 已提交
25 26 27 28 29 30 31

from ppcls.utils.check import check_gpu
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
32
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
33 34 35 36 37 38 39 40 41 42 43
from ppcls.arch import apply_to_static
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
from ppcls.utils.save_load import init_model
from ppcls.utils import save_load

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
D
dongshuilong 已提交
44 45
from ppcls.engine.train import train_epoch
from ppcls.engine import evaluation
D
dongshuilong 已提交
46 47 48
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
49
class Engine(object):
D
dongshuilong 已提交
50
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
51
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
52 53 54 55
        self.mode = mode
        self.config = config
        self.eval_mode = self.config["Global"].get("eval_mode",
                                                   "classification")
56 57
        if "Head" in self.config["Arch"] or self.config["Arch"].get("is_rec",
                                                                    False):
D
dongshuilong 已提交
58 59 60 61
            self.is_rec = True
        else:
            self.is_rec = False

D
dongshuilong 已提交
62 63
        # set seed
        seed = self.config["Global"].get("seed", False)
S
stephon 已提交
64
        if seed or seed == 0:
D
dongshuilong 已提交
65 66 67 68 69
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

D
dongshuilong 已提交
70 71 72 73 74 75 76 77
        # init logger
        self.output_dir = self.config['Global']['output_dir']
        log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
                                f"{mode}.log")
        init_logger(name='root', log_file=log_file)
        print_config(config)

        # init train_func and eval_func
D
dongshuilong 已提交
78 79
        assert self.eval_mode in ["classification", "retrieval"], logger.error(
            "Invalid eval mode: {}".format(self.eval_mode))
D
dongshuilong 已提交
80 81 82
        self.train_epoch_func = train_epoch
        self.eval_func = getattr(evaluation, self.eval_mode + "_eval")

D
dongshuilong 已提交
83 84 85 86
        self.use_dali = self.config['Global'].get("use_dali", False)

        # for visualdl
        self.vdl_writer = None
T
Tingquan Gao 已提交
87 88
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
D
dongshuilong 已提交
89 90 91 92 93 94
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            self.vdl_writer = LogWriter(logdir=vdl_writer_path)

        # set device
R
ronnywang 已提交
95
        assert self.config["Global"]["device"] in ["cpu", "gpu", "xpu", "npu"]
D
dongshuilong 已提交
96 97 98 99 100
        self.device = paddle.set_device(self.config["Global"]["device"])
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, self.device))

        # AMP training
G
gaotingquan 已提交
101
        self.amp = True if "AMP" in self.config and self.mode == "train" else False
D
dongshuilong 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115
        if self.amp and self.config["AMP"] is not None:
            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
        else:
            self.scale_loss = 1.0
            self.use_dynamic_loss_scaling = False
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {
                'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
                'FLAGS_max_inplace_grad_add': 8,
            }
            paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)

116 117 118 119 120 121 122 123
        if "class_num" in config["Global"]:
            global_class_num = config["Global"]["class_num"]
            if "class_num" not in config["Arch"]:
                config["Arch"]["class_num"] = global_class_num
                msg = f"The Global.class_num will be deprecated. Please use Arch.class_num instead. Arch.class_num has been set to {global_class_num}."
            else:
                msg = "The Global.class_num will be deprecated. Please use Arch.class_num instead. The Global.class_num has been ignored."
            logger.warning(msg)
124
        #TODO(gaotingquan): support rec
G
gaotingquan 已提交
125 126
        class_num = config["Arch"].get("class_num", None)
        self.config["DataLoader"].update({"class_num": class_num})
D
dongshuilong 已提交
127 128 129 130
        # build dataloader
        if self.mode == 'train':
            self.train_dataloader = build_dataloader(
                self.config["DataLoader"], "Train", self.device, self.use_dali)
D
dongshuilong 已提交
131 132
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
D
dongshuilong 已提交
133 134 135 136 137
            if self.eval_mode == "classification":
                self.eval_dataloader = build_dataloader(
                    self.config["DataLoader"], "Eval", self.device,
                    self.use_dali)
            elif self.eval_mode == "retrieval":
138 139 140 141 142 143 144 145 146 147 148 149 150
                self.gallery_query_dataloader = None
                if len(self.config["DataLoader"]["Eval"].keys()) == 1:
                    key = list(self.config["DataLoader"]["Eval"].keys())[0]
                    self.gallery_query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], key, self.device,
                        self.use_dali)
                else:
                    self.gallery_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Gallery",
                        self.device, self.use_dali)
                    self.query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Query",
                        self.device, self.use_dali)
D
dongshuilong 已提交
151 152 153 154 155

        # build loss
        if self.mode == "train":
            loss_info = self.config["Loss"]["Train"]
            self.train_loss_func = build_loss(loss_info)
D
dongshuilong 已提交
156 157
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
D
dongshuilong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            loss_config = self.config.get("Loss", None)
            if loss_config is not None:
                loss_config = loss_config.get("Eval")
                if loss_config is not None:
                    self.eval_loss_func = build_loss(loss_config)
                else:
                    self.eval_loss_func = None
            else:
                self.eval_loss_func = None

        # build metric
        if self.mode == 'train':
            metric_config = self.config.get("Metric")
            if metric_config is not None:
                metric_config = metric_config.get("Train")
                if metric_config is not None:
174
                    if hasattr(self.train_dataloader, "collate_fn"):
175 176 177 178 179 180
                        for m_idx, m in enumerate(metric_config):
                            if "TopkAcc" in m:
                                msg = f"'TopkAcc' metric can not be used when setting 'batch_transform_ops' in config. The 'TopkAcc' metric has been removed."
                                logger.warning(msg)
                                break
                        metric_config.pop(m_idx)
D
dongshuilong 已提交
181 182 183 184 185 186
                    self.train_metric_func = build_metrics(metric_config)
                else:
                    self.train_metric_func = None
        else:
            self.train_metric_func = None

D
dongshuilong 已提交
187 188
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
D
dongshuilong 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
            metric_config = self.config.get("Metric")
            if self.eval_mode == "classification":
                if metric_config is not None:
                    metric_config = metric_config.get("Eval")
                    if metric_config is not None:
                        self.eval_metric_func = build_metrics(metric_config)
            elif self.eval_mode == "retrieval":
                if metric_config is None:
                    metric_config = [{"name": "Recallk", "topk": (1, 5)}]
                else:
                    metric_config = metric_config["Eval"]
                self.eval_metric_func = build_metrics(metric_config)
        else:
            self.eval_metric_func = None

        # build model
W
weishengyu 已提交
205
        self.model = build_model(self.config)
D
dongshuilong 已提交
206 207
        # set @to_static for benchmark, skip this by default.
        apply_to_static(self.config, self.model)
D
dongshuilong 已提交
208

D
dongshuilong 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221
        # load_pretrain
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    self.model, self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    self.model, self.config["Global"]["pretrained_model"])

        # build optimizer
        if self.mode == 'train':
            self.optimizer, self.lr_sch = build_optimizer(
                self.config["Optimizer"], self.config["Global"]["epochs"],
G
gaotingquan 已提交
222
                len(self.train_dataloader), [self.model])
223

Z
zhangbo9674 已提交
224 225 226 227 228
        # for amp training
        if self.amp:
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)
229 230 231 232 233 234
            amp_level = self.config['AMP'].get("level", "O1")
            if amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                amp_level = "O1"
G
gaotingquan 已提交
235 236 237 238 239
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=amp_level,
                save_dtype='float32')
D
dongshuilong 已提交
240 241

        # for distributed
242 243 244 245 246
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        if world_size != 4 and self.mode == "train":
            msg = f"The training strategy in config files provided by PaddleClas is based on 4 gpus. But the number of gpus is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use config files in PaddleClas to train."
            logger.warning(msg)
D
dongshuilong 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)

        # build postprocess for infer
        if self.mode == 'infer':
            self.preprocess_func = create_operators(self.config["Infer"][
                "transforms"])
            self.postprocess_func = build_postprocess(self.config["Infer"][
                "PostProcess"])

    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
        best_metric = {
            "metric": 0.0,
            "epoch": 0,
        }
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
        # global iter counter
        self.global_step = 0

        if self.config["Global"]["checkpoints"] is not None:
            metric_info = init_model(self.config["Global"], self.model,
                                     self.optimizer)
            if metric_info is not None:
                best_metric.update(metric_info)

        self.max_iter = len(self.train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(self.train_dataloader)
        for epoch_id in range(best_metric["epoch"] + 1,
                              self.config["Global"]["epochs"] + 1):
            acc = 0.0
            # for one epoch train
D
dongshuilong 已提交
290
            self.train_epoch_func(self, epoch_id, print_batch_step)
D
dongshuilong 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

            if self.use_dali:
                self.train_dataloader.reset()
            metric_msg = ", ".join([
                "{}: {:.5f}".format(key, self.output_info[key].avg)
                for key in self.output_info
            ])
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(
                epoch_id, self.config["Global"]["epochs"], metric_msg))
            self.output_info.clear()

            # eval model and save model if possible
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
                        "eval_interval"] == 0:
                acc = self.eval(epoch_id)
                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
                    save_load.save_model(
                        self.model,
                        self.optimizer,
                        best_metric,
                        self.output_dir,
                        model_name=self.config["Arch"]["name"],
                        prefix="best_model")
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

            # save model
            if epoch_id % save_interval == 0:
                save_load.save_model(
                    self.model,
                    self.optimizer, {"metric": acc,
                                     "epoch": epoch_id},
                    self.output_dir,
                    model_name=self.config["Arch"]["name"],
                    prefix="epoch_{}".format(epoch_id))
G
gaotingquan 已提交
336 337 338 339 340 341 342 343
            # save the latest model
            save_load.save_model(
                self.model,
                self.optimizer, {"metric": acc,
                                 "epoch": epoch_id},
                self.output_dir,
                model_name=self.config["Arch"]["name"],
                prefix="latest")
D
dongshuilong 已提交
344 345 346 347 348 349 350 351

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
D
dongshuilong 已提交
352
        eval_result = self.eval_func(self, epoch_id)
D
dongshuilong 已提交
353 354 355 356 357 358
        self.model.train()
        return eval_result

    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
359 360
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
                out = self.model(batch_tensor)
                if isinstance(out, list):
                    out = out[0]
381 382 383
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
384
                    out = out["output"]
D
dongshuilong 已提交
385 386 387 388 389 390 391
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
C
cuicheng01 已提交
392 393
        use_multilabel = self.config["Global"].get("use_multilabel", False)
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
D
dongshuilong 已提交
394 395 396 397 398
        if self.config["Global"]["pretrained_model"] is not None:
            load_dygraph_pretrain(model.base_model,
                                  self.config["Global"]["pretrained_model"])

        model.eval()
D
dongshuilong 已提交
399 400
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
W
weishengyu 已提交
401
        if model.quanter:
W
weishengyu 已提交
402
            model.quanter.save_quantized_model(
C
cuicheng01 已提交
403
                model.base_model,
D
dongshuilong 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                save_path,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None] + self.config["Global"]["image_shape"],
                        dtype='float32')
                ])
        else:
            model = paddle.jit.to_static(
                model,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None] + self.config["Global"]["image_shape"],
                        dtype='float32')
                ])
            paddle.jit.save(model, save_path)
D
dongshuilong 已提交
419 420


W
dbg  
weishengyu 已提交
421
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
422 423 424 425
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
426
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
427 428 429 430 431 432 433 434 435 436 437 438
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
439 440
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
441
        else:
C
cuicheng01 已提交
442 443 444 445
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
461
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
462 463
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
464
            x = self.out_act(x)
D
dongshuilong 已提交
465
        return x