pp_lcnet.py 14.6 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
C
cuicheng01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    "PPLCNet_x0_25":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams",
    "PPLCNet_x0_35":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams",
    "PPLCNet_x0_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams",
    "PPLCNet_x0_75":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams",
    "PPLCNet_x1_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams",
    "PPLCNet_x1_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams",
    "PPLCNet_x2_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams",
    "PPLCNet_x2_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams"
C
cuicheng01 已提交
43 44
}

45 46 47 48
MODEL_STAGES_PATTERN = {
    "PPLCNet": ["blocks2", "blocks3", "blocks4", "blocks5", "blocks6"]
}

C
cuicheng01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
__all__ = list(MODEL_URLS.keys())

# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
# k: kernel_size
# in_c: input channel number in depthwise block
# out_c: output channel number in depthwise block
# s: stride in depthwise block
# use_se: whether to use SE block

NET_CONFIG = {
    "blocks2":
    #k, in_c, out_c, s, use_se
    [[3, 16, 32, 1, False]],
    "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
    "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
    "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
    "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
}


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
                 num_groups=1):
        super().__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=num_groups,
            weight_attr=ParamAttr(initializer=KaimingNormal()),
            bias_attr=False)

        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        self.hardswish = nn.Hardswish()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.hardswish(x)
        return x


class DepthwiseSeparable(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 dw_size=3,
                 use_se=False):
        super().__init__()
        self.use_se = use_se
        self.dw_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_channels,
            filter_size=dw_size,
            stride=stride,
            num_groups=num_channels)
        if use_se:
            self.se = SEModule(num_channels)
        self.pw_conv = ConvBNLayer(
            num_channels=num_channels,
            filter_size=1,
            num_filters=num_filters,
            stride=1)

    def forward(self, x):
        x = self.dw_conv(x)
        if self.use_se:
            x = self.se(x)
        x = self.pw_conv(x)
        return x


class SEModule(TheseusLayer):
    def __init__(self, channel, reduction=4):
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
            padding=0)
        self.relu = nn.ReLU()
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
            padding=0)
        self.hardsigmoid = nn.Hardsigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.hardsigmoid(x)
        x = paddle.multiply(x=identity, y=x)
        return x


C
cuicheng01 已提交
173
class PPLCNet(TheseusLayer):
C
cuicheng01 已提交
174
    def __init__(self,
175
                 stages_pattern,
C
cuicheng01 已提交
176 177 178
                 scale=1.0,
                 class_num=1000,
                 dropout_prob=0.2,
179
                 class_expand=1280,
180 181
                 return_patterns=None,
                 return_stages=None):
C
cuicheng01 已提交
182 183 184 185 186 187 188 189 190 191
        super().__init__()
        self.scale = scale
        self.class_expand = class_expand

        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            num_filters=make_divisible(16 * scale),
            stride=2)

192
        self.blocks2 = nn.Sequential(* [
C
cuicheng01 已提交
193 194 195 196 197 198 199 200 201
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
        ])

202
        self.blocks3 = nn.Sequential(* [
C
cuicheng01 已提交
203 204 205 206 207 208 209 210 211
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
        ])

212
        self.blocks4 = nn.Sequential(* [
C
cuicheng01 已提交
213 214 215 216 217 218 219 220 221
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
        ])

222
        self.blocks5 = nn.Sequential(* [
C
cuicheng01 已提交
223 224 225 226 227 228 229 230 231
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
        ])

232
        self.blocks6 = nn.Sequential(* [
C
cuicheng01 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
                use_se=se)
            for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"])
        ])

        self.avg_pool = AdaptiveAvgPool2D(1)

        self.last_conv = Conv2D(
            in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
            out_channels=self.class_expand,
            kernel_size=1,
            stride=1,
            padding=0,
            bias_attr=False)

        self.hardswish = nn.Hardswish()
        self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)

        self.fc = Linear(self.class_expand, class_num)

258 259 260 261
        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
262

C
cuicheng01 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    def forward(self, x):
        x = self.conv1(x)

        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = self.blocks5(x)
        x = self.blocks6(x)

        x = self.avg_pool(x)
        x = self.last_conv(x)
        x = self.hardswish(x)
        x = self.dropout(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


C
cuicheng01 已提交
294
def PPLCNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
295
    """
C
cuicheng01 已提交
296
    PPLCNet_x0_25
C
cuicheng01 已提交
297 298 299 300 301
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
302
        model: nn.Layer. Specific `PPLCNet_x0_25` model depends on args.
C
cuicheng01 已提交
303
    """
304 305
    model = PPLCNet(
        scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
306
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_25"], use_ssld)
C
cuicheng01 已提交
307 308 309
    return model


C
cuicheng01 已提交
310
def PPLCNet_x0_35(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
311
    """
C
cuicheng01 已提交
312
    PPLCNet_x0_35
C
cuicheng01 已提交
313 314 315 316 317
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
318
        model: nn.Layer. Specific `PPLCNet_x0_35` model depends on args.
C
cuicheng01 已提交
319
    """
320 321
    model = PPLCNet(
        scale=0.35, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
322
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_35"], use_ssld)
C
cuicheng01 已提交
323 324 325
    return model


C
cuicheng01 已提交
326
def PPLCNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
327
    """
C
cuicheng01 已提交
328
    PPLCNet_x0_5
C
cuicheng01 已提交
329 330 331 332 333
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
334
        model: nn.Layer. Specific `PPLCNet_x0_5` model depends on args.
C
cuicheng01 已提交
335
    """
336 337
    model = PPLCNet(
        scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
338
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_5"], use_ssld)
C
cuicheng01 已提交
339 340 341
    return model


C
cuicheng01 已提交
342
def PPLCNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
343
    """
C
cuicheng01 已提交
344
    PPLCNet_x0_75
C
cuicheng01 已提交
345 346 347 348 349
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
350
        model: nn.Layer. Specific `PPLCNet_x0_75` model depends on args.
C
cuicheng01 已提交
351
    """
352 353
    model = PPLCNet(
        scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
354
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_75"], use_ssld)
C
cuicheng01 已提交
355 356 357
    return model


C
cuicheng01 已提交
358
def PPLCNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
359
    """
C
cuicheng01 已提交
360
    PPLCNet_x1_0
C
cuicheng01 已提交
361 362 363 364 365
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
366
        model: nn.Layer. Specific `PPLCNet_x1_0` model depends on args.
C
cuicheng01 已提交
367
    """
368 369
    model = PPLCNet(
        scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
370
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_0"], use_ssld)
C
cuicheng01 已提交
371 372 373
    return model


C
cuicheng01 已提交
374
def PPLCNet_x1_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
375
    """
C
cuicheng01 已提交
376
    PPLCNet_x1_5
C
cuicheng01 已提交
377 378 379 380 381
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
382
        model: nn.Layer. Specific `PPLCNet_x1_5` model depends on args.
C
cuicheng01 已提交
383
    """
384 385
    model = PPLCNet(
        scale=1.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
386
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_5"], use_ssld)
C
cuicheng01 已提交
387 388 389
    return model


C
cuicheng01 已提交
390
def PPLCNet_x2_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
391
    """
C
cuicheng01 已提交
392
    PPLCNet_x2_0
C
cuicheng01 已提交
393 394 395 396 397
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
398
        model: nn.Layer. Specific `PPLCNet_x2_0` model depends on args.
C
cuicheng01 已提交
399
    """
400 401
    model = PPLCNet(
        scale=2.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
402
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_0"], use_ssld)
C
cuicheng01 已提交
403 404 405
    return model


C
cuicheng01 已提交
406
def PPLCNet_x2_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
407
    """
C
cuicheng01 已提交
408
    PPLCNet_x2_5
C
cuicheng01 已提交
409 410 411 412 413
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
414
        model: nn.Layer. Specific `PPLCNet_x2_5` model depends on args.
C
cuicheng01 已提交
415
    """
416 417
    model = PPLCNet(
        scale=2.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
418
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_5"], use_ssld)
C
cuicheng01 已提交
419
    return model