se_resnet_vd.py 12.7 KB
Newer Older
W
WuHaobo 已提交
1
#
2 3 4
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
5 6 7
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
8 9 10 11 12
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
13

G
gaotingquan 已提交
14 15
# reference: https://arxiv.org/abs/1812.01187 & https://arxiv.org/abs/1709.01507

W
WuHaobo 已提交
16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import numpy as np
W
WuHaobo 已提交
21
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
22 23 24
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
25 26
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
27
from paddle.nn.initializer import Uniform
28 29

import math
W
WuHaobo 已提交
30

R
root 已提交
31
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
32 33

MODEL_URLS = {
littletomatodonkey's avatar
littletomatodonkey 已提交
34 35 36 37 38 39 40
    "SE_ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams",
    "SE_ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams",
    "SE_ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams",
}
C
cuicheng01 已提交
41 42

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
43 44


littletomatodonkey's avatar
littletomatodonkey 已提交
45
class ConvBNLayer(nn.Layer):
46 47 48 49 50 51 52 53 54 55
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
56 57 58
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
59
        self._pool2d_avg = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
60 61
            kernel_size=2, stride=2, padding=0, ceil_mode=True)

62
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
63 64 65
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
66
            stride=stride,
W
WuHaobo 已提交
67 68
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
69
            weight_attr=ParamAttr(name=name + "_weights"),
70
            bias_attr=False)
W
WuHaobo 已提交
71 72 73 74
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
75 76
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
77 78 79 80
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
81
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
82

83 84 85 86 87 88 89 90
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
91
class BottleneckBlock(nn.Layer):
92 93 94 95 96 97 98
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
99
                 name=None):
100 101 102 103
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
104 105 106
            num_filters=num_filters,
            filter_size=1,
            act='relu',
107
            name=name + "_branch2a")
108 109
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
110 111 112 113
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
114
            name=name + "_branch2b")
115 116
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
117 118 119
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
120
            name=name + "_branch2c")
121
        self.scale = SELayer(
W
WuHaobo 已提交
122
            num_channels=num_filters * 4,
123
            num_filters=num_filters * 4,
W
WuHaobo 已提交
124
            reduction_ratio=reduction_ratio,
125
            name='fc_' + name)
W
WuHaobo 已提交
126

127 128 129 130 131 132 133
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
134
                name=name + "_branch1")
135 136

        self.shortcut = shortcut
W
WuHaobo 已提交
137

138 139 140 141 142
    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)
W
WuHaobo 已提交
143

144 145 146 147
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
148 149
        y = paddle.add(x=short, y=scale)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
150
        return y
151 152


littletomatodonkey's avatar
littletomatodonkey 已提交
153
class BasicBlock(nn.Layer):
154 155 156 157 158 159 160
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
161
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
162
        super(BasicBlock, self).__init__()
163 164 165
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
166 167 168
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
169
            act='relu',
170
            name=name + "_branch2a")
171 172
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
173 174 175
            num_filters=num_filters,
            filter_size=3,
            act=None,
176
            name=name + "_branch2b")
177 178

        self.scale = SELayer(
W
WuHaobo 已提交
179
            num_channels=num_filters,
180
            num_filters=num_filters,
W
WuHaobo 已提交
181
            reduction_ratio=reduction_ratio,
182
            name='fc_' + name)
183 184 185 186 187 188 189 190

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
191
                name=name + "_branch1")
192 193 194 195 196 197 198 199 200 201 202 203

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        scale = self.scale(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
204 205
        y = paddle.add(x=short, y=scale)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
206
        return y
207 208


littletomatodonkey's avatar
littletomatodonkey 已提交
209
class SELayer(nn.Layer):
210
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
211 212
        super(SELayer, self).__init__()

213
        self.pool2d_gap = AdaptiveAvgPool2D(1)
214 215 216 217 218 219 220 221

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
littletomatodonkey's avatar
littletomatodonkey 已提交
222 223
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
W
WuHaobo 已提交
224
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
225 226 227 228 229

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
littletomatodonkey's avatar
littletomatodonkey 已提交
230 231
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
W
WuHaobo 已提交
232 233
            bias_attr=ParamAttr(name=name + '_exc_offset'))

234 235
    def forward(self, input):
        pool = self.pool2d_gap(input)
L
littletomatodonkey 已提交
236
        pool = paddle.squeeze(pool, axis=[2, 3])
237
        squeeze = self.squeeze(pool)
littletomatodonkey's avatar
littletomatodonkey 已提交
238
        squeeze = F.relu(squeeze)
239
        excitation = self.excitation(squeeze)
littletomatodonkey's avatar
littletomatodonkey 已提交
240
        excitation = F.sigmoid(excitation)
L
littletomatodonkey 已提交
241
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
242 243
        out = input * excitation
        return out
W
WuHaobo 已提交
244

245

littletomatodonkey's avatar
littletomatodonkey 已提交
246
class SE_ResNet_vd(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
247
    def __init__(self, layers=50, class_num=1000):
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        super(SE_ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
271
            num_channels=3,
272 273 274 275
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
276
            name="conv1_1")
277 278 279 280 281 282
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
283
            name="conv1_2")
284 285 286 287 288 289
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
290 291
            name="conv1_3")
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
314
                            name=conv_name))
315 316 317 318 319 320 321
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
322
                    basic_block = self.add_sublayer(
323
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
324
                        BasicBlock(
325 326 327 328 329 330 331
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
332
                    self.block_list.append(basic_block)
333 334
                    shortcut = True

335
        self.pool2d_avg = AdaptiveAvgPool2D(1)
336 337 338 339 340 341 342

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
littletomatodonkey's avatar
littletomatodonkey 已提交
343
            class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
344 345
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc6_weights"),
346 347 348 349 350 351 352 353 354 355
            bias_attr=ParamAttr(name="fc6_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
356
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
357 358 359
        y = self.out(y)
        return y

littletomatodonkey's avatar
littletomatodonkey 已提交
360

C
cuicheng01 已提交
361 362 363 364 365 366 367 368 369 370 371
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
littletomatodonkey's avatar
littletomatodonkey 已提交
372

C
cuicheng01 已提交
373 374 375

def SE_ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=18, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
376 377
    _load_pretrained(
        pretrained, model, MODEL_URLS["SE_ResNet18_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
378 379 380
    return model


C
cuicheng01 已提交
381 382
def SE_ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=34, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
383 384
    _load_pretrained(
        pretrained, model, MODEL_URLS["SE_ResNet34_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
385 386 387
    return model


C
cuicheng01 已提交
388 389
def SE_ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=50, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
390 391
    _load_pretrained(
        pretrained, model, MODEL_URLS["SE_ResNet50_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
392
    return model