pp_lcnet.py 16.9 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import paddle
import paddle.nn as nn
from paddle import ParamAttr
C
cuicheng01 已提交
20
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
C
cuicheng01 已提交
21 22
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
R
root 已提交
23 24 25

from ..base.theseus_layer import TheseusLayer
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
26 27

MODEL_URLS = {
C
cuicheng01 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    "PPLCNet_x0_25":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams",
    "PPLCNet_x0_35":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams",
    "PPLCNet_x0_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams",
    "PPLCNet_x0_75":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams",
    "PPLCNet_x1_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams",
    "PPLCNet_x1_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams",
    "PPLCNet_x2_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams",
    "PPLCNet_x2_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams"
C
cuicheng01 已提交
44 45
}

46 47 48 49
MODEL_STAGES_PATTERN = {
    "PPLCNet": ["blocks2", "blocks3", "blocks4", "blocks5", "blocks6"]
}

C
cuicheng01 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
__all__ = list(MODEL_URLS.keys())

# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
# k: kernel_size
# in_c: input channel number in depthwise block
# out_c: output channel number in depthwise block
# s: stride in depthwise block
# use_se: whether to use SE block

NET_CONFIG = {
    "blocks2":
    #k, in_c, out_c, s, use_se
    [[3, 16, 32, 1, False]],
    "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
    "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
    "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False],
                [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
    "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
}


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
C
cuicheng01 已提交
87 88
                 num_groups=1,
                 lr_mult=1.0):
C
cuicheng01 已提交
89 90 91 92 93 94 95 96 97
        super().__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=num_groups,
C
cuicheng01 已提交
98 99
            weight_attr=ParamAttr(
                initializer=KaimingNormal(), learning_rate=lr_mult),
C
cuicheng01 已提交
100 101
            bias_attr=False)

C
cuicheng01 已提交
102
        self.bn = BatchNorm2D(
C
cuicheng01 已提交
103
            num_filters,
C
cuicheng01 已提交
104 105 106 107
            weight_attr=ParamAttr(
                regularizer=L2Decay(0.0), learning_rate=lr_mult),
            bias_attr=ParamAttr(
                regularizer=L2Decay(0.0), learning_rate=lr_mult))
C
cuicheng01 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        self.hardswish = nn.Hardswish()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.hardswish(x)
        return x


class DepthwiseSeparable(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 dw_size=3,
C
cuicheng01 已提交
123 124
                 use_se=False,
                 lr_mult=1.0):
C
cuicheng01 已提交
125 126 127 128 129 130 131
        super().__init__()
        self.use_se = use_se
        self.dw_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_channels,
            filter_size=dw_size,
            stride=stride,
C
cuicheng01 已提交
132 133
            num_groups=num_channels,
            lr_mult=lr_mult)
C
cuicheng01 已提交
134
        if use_se:
C
cuicheng01 已提交
135
            self.se = SEModule(num_channels, lr_mult=lr_mult)
C
cuicheng01 已提交
136 137 138 139
        self.pw_conv = ConvBNLayer(
            num_channels=num_channels,
            filter_size=1,
            num_filters=num_filters,
C
cuicheng01 已提交
140 141
            stride=1,
            lr_mult=lr_mult)
C
cuicheng01 已提交
142 143 144 145 146 147 148 149 150 151

    def forward(self, x):
        x = self.dw_conv(x)
        if self.use_se:
            x = self.se(x)
        x = self.pw_conv(x)
        return x


class SEModule(TheseusLayer):
C
cuicheng01 已提交
152
    def __init__(self, channel, reduction=4, lr_mult=1.0):
C
cuicheng01 已提交
153 154 155 156 157 158 159
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
C
cuicheng01 已提交
160 161 162
            padding=0,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))
C
cuicheng01 已提交
163 164 165 166 167 168
        self.relu = nn.ReLU()
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
C
cuicheng01 已提交
169 170 171
            padding=0,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))
C
cuicheng01 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
        self.hardsigmoid = nn.Hardsigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.hardsigmoid(x)
        x = paddle.multiply(x=identity, y=x)
        return x


C
cuicheng01 已提交
185
class PPLCNet(TheseusLayer):
C
cuicheng01 已提交
186
    def __init__(self,
187
                 stages_pattern,
C
cuicheng01 已提交
188 189 190
                 scale=1.0,
                 class_num=1000,
                 dropout_prob=0.2,
191
                 class_expand=1280,
C
cuicheng01 已提交
192 193 194
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                 stride_list=[2, 2, 2, 2, 2],
                 use_last_conv=True,
195
                 return_patterns=None,
196 197
                 return_stages=None,
                 **kwargs):
C
cuicheng01 已提交
198 199 200
        super().__init__()
        self.scale = scale
        self.class_expand = class_expand
C
cuicheng01 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        self.lr_mult_list = lr_mult_list
        self.use_last_conv = use_last_conv
        self.stride_list = stride_list
        self.net_config = NET_CONFIG
        if isinstance(self.lr_mult_list, str):
            self.lr_mult_list = eval(self.lr_mult_list)

        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
        assert len(self.lr_mult_list
                   ) == 6, "lr_mult_list length should be 6 but got {}".format(
                       len(self.lr_mult_list))

        assert isinstance(self.stride_list, (
            list, tuple
        )), "stride_list should be in (list, tuple) but got {}".format(
            type(self.stride_list))
        assert len(self.stride_list
                   ) == 5, "stride_list length should be 5 but got {}".format(
                       len(self.stride_list))
C
cuicheng01 已提交
223

C
cuicheng01 已提交
224
        for i, stride in enumerate(stride_list[1:]):
C
cuicheng01 已提交
225
            self.net_config["blocks{}".format(i + 3)][0][3] = stride
C
cuicheng01 已提交
226 227 228 229
        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            num_filters=make_divisible(16 * scale),
C
cuicheng01 已提交
230 231
            stride=stride_list[0],
            lr_mult=self.lr_mult_list[0])
C
cuicheng01 已提交
232

R
root 已提交
233
        self.blocks2 = nn.Sequential(* [
C
cuicheng01 已提交
234 235 236 237 238
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
239
                use_se=se,
R
root 已提交
240 241
                lr_mult=self.lr_mult_list[1]) for i, (k, in_c, out_c, s, se) in
            enumerate(self.net_config["blocks2"])
C
cuicheng01 已提交
242 243
        ])

R
root 已提交
244
        self.blocks3 = nn.Sequential(* [
C
cuicheng01 已提交
245 246 247 248 249
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
250
                use_se=se,
R
root 已提交
251 252
                lr_mult=self.lr_mult_list[2]) for i, (k, in_c, out_c, s, se) in
            enumerate(self.net_config["blocks3"])
C
cuicheng01 已提交
253 254
        ])

R
root 已提交
255
        self.blocks4 = nn.Sequential(* [
C
cuicheng01 已提交
256 257 258 259 260
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
261
                use_se=se,
R
root 已提交
262 263
                lr_mult=self.lr_mult_list[3]) for i, (k, in_c, out_c, s, se) in
            enumerate(self.net_config["blocks4"])
C
cuicheng01 已提交
264 265
        ])

R
root 已提交
266
        self.blocks5 = nn.Sequential(* [
C
cuicheng01 已提交
267 268 269 270 271
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
272
                use_se=se,
R
root 已提交
273 274
                lr_mult=self.lr_mult_list[4]) for i, (k, in_c, out_c, s, se) in
            enumerate(self.net_config["blocks5"])
C
cuicheng01 已提交
275 276
        ])

R
root 已提交
277
        self.blocks6 = nn.Sequential(* [
C
cuicheng01 已提交
278 279 280 281 282
            DepthwiseSeparable(
                num_channels=make_divisible(in_c * scale),
                num_filters=make_divisible(out_c * scale),
                dw_size=k,
                stride=s,
C
cuicheng01 已提交
283
                use_se=se,
R
root 已提交
284 285
                lr_mult=self.lr_mult_list[5]) for i, (k, in_c, out_c, s, se) in
            enumerate(self.net_config["blocks6"])
C
cuicheng01 已提交
286 287 288
        ])

        self.avg_pool = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
289 290
        if self.use_last_conv:
            self.last_conv = Conv2D(
C
cuicheng01 已提交
291 292
                in_channels=make_divisible(self.net_config["blocks6"][-1][2] *
                                           scale),
C
cuicheng01 已提交
293 294 295 296 297 298 299 300 301
                out_channels=self.class_expand,
                kernel_size=1,
                stride=1,
                padding=0,
                bias_attr=False)
            self.hardswish = nn.Hardswish()
            self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
        else:
            self.last_conv = None
C
cuicheng01 已提交
302
        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
C
cuicheng01 已提交
303 304 305
        self.fc = Linear(
            self.class_expand if self.use_last_conv else
            make_divisible(self.net_config["blocks6"][-1][2]), class_num)
C
cuicheng01 已提交
306

307 308 309 310
        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
311

C
cuicheng01 已提交
312 313 314 315 316 317 318 319 320 321
    def forward(self, x):
        x = self.conv1(x)

        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = self.blocks5(x)
        x = self.blocks6(x)

        x = self.avg_pool(x)
C
cuicheng01 已提交
322 323 324 325
        if self.last_conv is not None:
            x = self.last_conv(x)
            x = self.hardswish(x)
            x = self.dropout(x)
C
cuicheng01 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        x = self.flatten(x)
        x = self.fc(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


C
cuicheng01 已提交
344
def PPLCNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
345
    """
C
cuicheng01 已提交
346
    PPLCNet_x0_25
C
cuicheng01 已提交
347 348 349 350 351
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
352
        model: nn.Layer. Specific `PPLCNet_x0_25` model depends on args.
C
cuicheng01 已提交
353
    """
354 355
    model = PPLCNet(
        scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
356
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_25"], use_ssld)
C
cuicheng01 已提交
357 358 359
    return model


C
cuicheng01 已提交
360
def PPLCNet_x0_35(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
361
    """
C
cuicheng01 已提交
362
    PPLCNet_x0_35
C
cuicheng01 已提交
363 364 365 366 367
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
368
        model: nn.Layer. Specific `PPLCNet_x0_35` model depends on args.
C
cuicheng01 已提交
369
    """
370 371
    model = PPLCNet(
        scale=0.35, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
372
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_35"], use_ssld)
C
cuicheng01 已提交
373 374 375
    return model


C
cuicheng01 已提交
376
def PPLCNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
377
    """
C
cuicheng01 已提交
378
    PPLCNet_x0_5
C
cuicheng01 已提交
379 380 381 382 383
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
384
        model: nn.Layer. Specific `PPLCNet_x0_5` model depends on args.
C
cuicheng01 已提交
385
    """
386 387
    model = PPLCNet(
        scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
388
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_5"], use_ssld)
C
cuicheng01 已提交
389 390 391
    return model


C
cuicheng01 已提交
392
def PPLCNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
393
    """
C
cuicheng01 已提交
394
    PPLCNet_x0_75
C
cuicheng01 已提交
395 396 397 398 399
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
400
        model: nn.Layer. Specific `PPLCNet_x0_75` model depends on args.
C
cuicheng01 已提交
401
    """
402 403
    model = PPLCNet(
        scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
404
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_75"], use_ssld)
C
cuicheng01 已提交
405 406 407
    return model


C
cuicheng01 已提交
408
def PPLCNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
409
    """
C
cuicheng01 已提交
410
    PPLCNet_x1_0
C
cuicheng01 已提交
411 412 413 414 415
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
416
        model: nn.Layer. Specific `PPLCNet_x1_0` model depends on args.
C
cuicheng01 已提交
417
    """
418 419
    model = PPLCNet(
        scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
420
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_0"], use_ssld)
C
cuicheng01 已提交
421 422 423
    return model


C
cuicheng01 已提交
424
def PPLCNet_x1_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
425
    """
C
cuicheng01 已提交
426
    PPLCNet_x1_5
C
cuicheng01 已提交
427 428 429 430 431
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
432
        model: nn.Layer. Specific `PPLCNet_x1_5` model depends on args.
C
cuicheng01 已提交
433
    """
434 435
    model = PPLCNet(
        scale=1.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
436
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_5"], use_ssld)
C
cuicheng01 已提交
437 438 439
    return model


C
cuicheng01 已提交
440
def PPLCNet_x2_0(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
441
    """
C
cuicheng01 已提交
442
    PPLCNet_x2_0
C
cuicheng01 已提交
443 444 445 446 447
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
448
        model: nn.Layer. Specific `PPLCNet_x2_0` model depends on args.
C
cuicheng01 已提交
449
    """
450 451
    model = PPLCNet(
        scale=2.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
452
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_0"], use_ssld)
C
cuicheng01 已提交
453 454 455
    return model


C
cuicheng01 已提交
456
def PPLCNet_x2_5(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
457
    """
C
cuicheng01 已提交
458
    PPLCNet_x2_5
C
cuicheng01 已提交
459 460 461 462 463
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
C
cuicheng01 已提交
464
        model: nn.Layer. Specific `PPLCNet_x2_5` model depends on args.
C
cuicheng01 已提交
465
    """
466 467
    model = PPLCNet(
        scale=2.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs)
C
cuicheng01 已提交
468
    _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_5"], use_ssld)
C
cuicheng01 已提交
469
    return model