train.py 4.3 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
add ad  
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
19 20
import argparse
import os
21 22 23 24
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
W
WuHaobo 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28

import paddle
from paddle.distributed import ParallelEnv
W
WuHaobo 已提交
29

30 31 32 33 34 35
from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program

W
WuHaobo 已提交
36 37 38 39 40 41
def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
W
WuHaobo 已提交
42
        default='configs/ResNet/ResNet50.yaml',
W
WuHaobo 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55
        help='config file path')
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    config = get_config(args.config, overrides=args.override, show=True)
W
WuHaobo 已提交
56
    # assign the place
57 58
    use_gpu = config.get("use_gpu", True)
    if use_gpu:
littletomatodonkey's avatar
littletomatodonkey 已提交
59 60
        gpu_id = ParallelEnv().dev_id
        place = paddle.CUDAPlace(gpu_id)
61
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
62
        place = paddle.CPUPlace()
W
WuHaobo 已提交
63

64 65 66
    use_data_parallel = int(os.getenv("PADDLE_TRAINERS_NUM", 1)) != 1
    config["use_data_parallel"] = use_data_parallel

littletomatodonkey's avatar
littletomatodonkey 已提交
67 68 69 70
    paddle.disable_static(place)

    net = program.create_model(config.ARCHITECTURE, config.classes_num)

71
    optimizer, lr_scheduler = program.create_optimizer(
littletomatodonkey's avatar
littletomatodonkey 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        config, parameter_list=net.parameters())

    if config["use_data_parallel"]:
        strategy = paddle.distributed.init_parallel_env()
        net = paddle.DataParallel(net, strategy)

    # load model from checkpoint or pretrained model
    init_model(config, net, optimizer)

    train_dataloader = program.create_dataloader()
    train_reader = Reader(config, 'train')()
    train_dataloader.set_sample_list_generator(train_reader, place)

    if config.validate:
        valid_dataloader = program.create_dataloader()
        valid_reader = Reader(config, 'valid')()
        valid_dataloader.set_sample_list_generator(valid_reader, place)

    best_top1_acc = 0.0  # best top1 acc record
    for epoch_id in range(config.epochs):
        net.train()
        # 1. train with train dataset
94 95
        program.run(train_dataloader, config, net, optimizer, lr_scheduler,
                    epoch_id, 'train')
littletomatodonkey's avatar
littletomatodonkey 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        if not config["use_data_parallel"] or ParallelEnv().local_rank == 0:
            # 2. validate with validate dataset
            if config.validate and epoch_id % config.valid_interval == 0:
                net.eval()
                top1_acc = program.run(valid_dataloader, config, net, None,
                                       epoch_id, 'valid')
                if top1_acc > best_top1_acc:
                    best_top1_acc = top1_acc
                    message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
                        best_top1_acc, epoch_id)
                    logger.info("{:s}".format(logger.coloring(message, "RED")))
                    if epoch_id % config.save_interval == 0:

                        model_path = os.path.join(config.model_save_dir,
                                                  config.ARCHITECTURE["name"])
                        save_model(net, optimizer, model_path, "best_model")

            # 3. save the persistable model
            if epoch_id % config.save_interval == 0:
                model_path = os.path.join(config.model_save_dir,
                                          config.ARCHITECTURE["name"])
                save_model(net, optimizer, model_path, epoch_id)
W
WuHaobo 已提交
119 120 121 122


if __name__ == '__main__':
    args = parse_args()
123
    main(args)