retrieval.py 14.0 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
dongshuilong 已提交
17

D
dongshuilong 已提交
18
import platform
H
HydrogenSulfate 已提交
19 20 21
from typing import Optional

import numpy as np
D
dongshuilong 已提交
22 23 24 25
import paddle
from ppcls.utils import logger


W
weishengyu 已提交
26 27
def retrieval_eval(engine, epoch_id=0):
    engine.model.eval()
D
dongshuilong 已提交
28
    # step1. build gallery
W
weishengyu 已提交
29
    if engine.gallery_query_dataloader is not None:
30
        gallery_feas, gallery_img_id, gallery_unique_id = cal_feature(
W
weishengyu 已提交
31
            engine, name='gallery_query')
32 33 34
        query_feas, query_img_id, query_query_id = gallery_feas, gallery_img_id, gallery_unique_id
    else:
        gallery_feas, gallery_img_id, gallery_unique_id = cal_feature(
W
weishengyu 已提交
35
            engine, name='gallery')
36
        query_feas, query_img_id, query_query_id = cal_feature(
W
weishengyu 已提交
37
            engine, name='query')
D
dongshuilong 已提交
38 39

    # step2. do evaluation
W
weishengyu 已提交
40
    sim_block_size = engine.config["Global"].get("sim_block_size", 64)
D
dongshuilong 已提交
41 42 43 44 45 46 47 48 49 50
    sections = [sim_block_size] * (len(query_feas) // sim_block_size)
    if len(query_feas) % sim_block_size:
        sections.append(len(query_feas) % sim_block_size)
    fea_blocks = paddle.split(query_feas, num_or_sections=sections)
    if query_query_id is not None:
        query_id_blocks = paddle.split(
            query_query_id, num_or_sections=sections)
    image_id_blocks = paddle.split(query_img_id, num_or_sections=sections)
    metric_key = None

W
weishengyu 已提交
51
    if engine.eval_loss_func is None:
D
dongshuilong 已提交
52 53
        metric_dict = {metric_key: 0.}
    else:
H
HydrogenSulfate 已提交
54 55
        reranking_flag = engine.config['Global'].get('re_ranking', False)
        logger.info(f"re_ranking={reranking_flag}")
D
dongshuilong 已提交
56
        metric_dict = dict()
H
HydrogenSulfate 已提交
57 58 59 60
        if reranking_flag:
            # set the order from small to large
            for i in range(len(engine.eval_metric_func.metric_func_list)):
                if hasattr(engine.eval_metric_func.metric_func_list[i], 'descending') \
H
HydrogenSulfate 已提交
61
                        and engine.eval_metric_func.metric_func_list[i].descending is True:
H
HydrogenSulfate 已提交
62 63
                    engine.eval_metric_func.metric_func_list[
                        i].descending = False
H
HydrogenSulfate 已提交
64 65
                    logger.warning(
                        f"re_ranking=True,{engine.eval_metric_func.metric_func_list[i].__class__.__name__}.descending has been set to False"
H
HydrogenSulfate 已提交
66 67 68 69 70
                    )

            # compute distance matrix(The smaller the value, the more similar)
            distmat = re_ranking(
                query_feas, gallery_feas, k1=20, k2=6, lambda_value=0.3)
H
HydrogenSulfate 已提交
71

H
HydrogenSulfate 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
            # compute keep mask
            query_id_mask = (query_query_id != gallery_unique_id.t())
            image_id_mask = (query_img_id != gallery_img_id.t())
            keep_mask = paddle.logical_or(query_id_mask, image_id_mask)

            # set inf(1e9) distance to those exist in gallery
            distmat = distmat * keep_mask.astype("float32")
            inf_mat = (paddle.logical_not(keep_mask).astype("float32")) * 1e20
            distmat = distmat + inf_mat

            # compute metric
            metric_tmp = engine.eval_metric_func(distmat, query_img_id,
                                                 gallery_img_id, keep_mask)
H
HydrogenSulfate 已提交
85
            for key in metric_tmp:
H
HydrogenSulfate 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                metric_dict[key] = metric_tmp[key]
        else:
            for block_idx, block_fea in enumerate(fea_blocks):
                similarity_matrix = paddle.matmul(
                    block_fea, gallery_feas, transpose_y=True)  # [n,m]
                if query_query_id is not None:
                    query_id_block = query_id_blocks[block_idx]
                    query_id_mask = (query_id_block != gallery_unique_id.t())

                    image_id_block = image_id_blocks[block_idx]
                    image_id_mask = (image_id_block != gallery_img_id.t())

                    keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
                    similarity_matrix = similarity_matrix * keep_mask.astype(
                        "float32")
D
dongshuilong 已提交
101
                else:
H
HydrogenSulfate 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
                    keep_mask = None

                metric_tmp = engine.eval_metric_func(
                    similarity_matrix, image_id_blocks[block_idx],
                    gallery_img_id, keep_mask)

                for key in metric_tmp:
                    if key not in metric_dict:
                        metric_dict[key] = metric_tmp[key] * block_fea.shape[
                            0] / len(query_feas)
                    else:
                        metric_dict[key] += metric_tmp[key] * block_fea.shape[
                            0] / len(query_feas)
H
HydrogenSulfate 已提交
115

D
dongshuilong 已提交
116 117 118 119 120 121 122 123 124 125 126
    metric_info_list = []
    for key in metric_dict:
        if metric_key is None:
            metric_key = key
        metric_info_list.append("{}: {:.5f}".format(key, metric_dict[key]))
    metric_msg = ", ".join(metric_info_list)
    logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

    return metric_dict[metric_key]


W
weishengyu 已提交
127
def cal_feature(engine, name='gallery'):
D
dongshuilong 已提交
128
    has_unique_id = False
G
gaotingquan 已提交
129
    all_unique_id = None
D
dongshuilong 已提交
130 131

    if name == 'gallery':
W
weishengyu 已提交
132
        dataloader = engine.gallery_dataloader
D
dongshuilong 已提交
133
    elif name == 'query':
W
weishengyu 已提交
134
        dataloader = engine.query_dataloader
135
    elif name == 'gallery_query':
W
weishengyu 已提交
136
        dataloader = engine.gallery_query_dataloader
D
dongshuilong 已提交
137 138 139
    else:
        raise RuntimeError("Only support gallery or query dataset")

140 141 142
    batch_feas_list = []
    img_id_list = []
    unique_id_list = []
D
dongshuilong 已提交
143 144
    max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len(
        dataloader)
W
weishengyu 已提交
145
    for idx, batch in enumerate(dataloader):  # load is very time-consuming
D
dongshuilong 已提交
146 147
        if idx >= max_iter:
            break
W
weishengyu 已提交
148
        if idx % engine.config["Global"]["print_batch_step"] == 0:
D
dongshuilong 已提交
149 150 151
            logger.info(
                f"{name} feature calculation process: [{idx}/{len(dataloader)}]"
            )
W
weishengyu 已提交
152
        if engine.use_dali:
D
dongshuilong 已提交
153 154 155 156 157 158 159 160 161
            batch = [
                paddle.to_tensor(batch[0]['data']),
                paddle.to_tensor(batch[0]['label'])
            ]
        batch = [paddle.to_tensor(x) for x in batch]
        batch[1] = batch[1].reshape([-1, 1]).astype("int64")
        if len(batch) == 3:
            has_unique_id = True
            batch[2] = batch[2].reshape([-1, 1]).astype("int64")
162 163 164 165 166 167 168 169 170
        if engine.amp and engine.amp_eval:
            with paddle.amp.auto_cast(
                    custom_black_list={
                        "flatten_contiguous_range", "greater_than"
                    },
                    level=engine.amp_level):
                out = engine.model(batch[0], batch[1])
        else:
            out = engine.model(batch[0], batch[1])
171 172
        if "Student" in out:
            out = out["Student"]
173 174

        # get features
H
HydrogenSulfate 已提交
175 176 177 178 179
        if engine.config["Global"].get("retrieval_feature_from",
                                       "features") == "features":
            # use neck's output as features
            batch_feas = out["features"]
        else:
180 181
            # use backbone's output as features
            batch_feas = out["backbone"]
D
dongshuilong 已提交
182 183

        # do norm
W
weishengyu 已提交
184
        if engine.config["Global"].get("feature_normalize", True):
D
dongshuilong 已提交
185 186 187
            feas_norm = paddle.sqrt(
                paddle.sum(paddle.square(batch_feas), axis=1, keepdim=True))
            batch_feas = paddle.divide(batch_feas, feas_norm)
188

B
Bin Lu 已提交
189
        # do binarize
W
weishengyu 已提交
190
        if engine.config["Global"].get("feature_binarize") == "round":
B
Bin Lu 已提交
191 192
            batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0

W
weishengyu 已提交
193
        if engine.config["Global"].get("feature_binarize") == "sign":
B
Bin Lu 已提交
194
            batch_feas = paddle.sign(batch_feas).astype("float32")
D
dongshuilong 已提交
195

196 197 198 199 200 201 202 203
        if paddle.distributed.get_world_size() > 1:
            batch_feas_gather = []
            img_id_gather = []
            unique_id_gather = []
            paddle.distributed.all_gather(batch_feas_gather, batch_feas)
            paddle.distributed.all_gather(img_id_gather, batch[1])
            batch_feas_list.append(paddle.concat(batch_feas_gather))
            img_id_list.append(paddle.concat(img_id_gather))
D
dongshuilong 已提交
204
            if has_unique_id:
205 206
                paddle.distributed.all_gather(unique_id_gather, batch[2])
                unique_id_list.append(paddle.concat(unique_id_gather))
D
dongshuilong 已提交
207
        else:
208 209
            batch_feas_list.append(batch_feas)
            img_id_list.append(batch[1])
D
dongshuilong 已提交
210
            if has_unique_id:
211
                unique_id_list.append(batch[2])
212

W
weishengyu 已提交
213 214
    if engine.use_dali:
        dataloader.reset()
215

216 217 218 219 220 221 222 223 224 225 226 227
    all_feas = paddle.concat(batch_feas_list)
    all_img_id = paddle.concat(img_id_list)
    if has_unique_id:
        all_unique_id = paddle.concat(unique_id_list)

    # just for DistributedBatchSampler issue: repeat sampling
    total_samples = len(
        dataloader.dataset) if not engine.use_dali else dataloader.size
    all_feas = all_feas[:total_samples]
    all_img_id = all_img_id[:total_samples]
    if has_unique_id:
        all_unique_id = all_unique_id[:total_samples]
D
dongshuilong 已提交
228 229 230

    logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
        name, all_feas.shape))
231
    return all_feas, all_img_id, all_unique_id
H
HydrogenSulfate 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337


def re_ranking(query_feas: paddle.Tensor,
               gallery_feas: paddle.Tensor,
               k1: int=20,
               k2: int=6,
               lambda_value: int=0.5,
               local_distmat: Optional[np.ndarray]=None,
               only_local: bool=False) -> paddle.Tensor:
    """re-ranking, most computed with numpy

    code heavily based on
    https://github.com/michuanhaohao/reid-strong-baseline/blob/3da7e6f03164a92e696cb6da059b1cd771b0346d/utils/reid_metric.py

    Args:
        query_feas (paddle.Tensor): query features, [num_query, num_features]
        gallery_feas (paddle.Tensor): gallery features, [num_gallery, num_features]
        k1 (int, optional): k1. Defaults to 20.
        k2 (int, optional): k2. Defaults to 6.
        lambda_value (int, optional): lambda. Defaults to 0.5.
        local_distmat (Optional[np.ndarray], optional): local_distmat. Defaults to None.
        only_local (bool, optional): only_local. Defaults to False.

    Returns:
        paddle.Tensor: final_dist matrix after re-ranking, [num_query, num_gallery]
    """
    query_num = query_feas.shape[0]
    all_num = query_num + gallery_feas.shape[0]
    if only_local:
        original_dist = local_distmat
    else:
        feat = paddle.concat([query_feas, gallery_feas])
        logger.info('using GPU to compute original distance')

        # L2 distance
        distmat = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]) + \
            paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]).t()
        distmat = distmat.addmm(x=feat, y=feat.t(), alpha=-2.0, beta=1.0)

        original_dist = distmat.cpu().numpy()
        del feat
        if local_distmat is not None:
            original_dist = original_dist + local_distmat

    gallery_num = original_dist.shape[0]
    original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
    V = np.zeros_like(original_dist).astype(np.float16)
    initial_rank = np.argsort(original_dist).astype(np.int32)
    logger.info('starting re_ranking')
    for i in range(all_num):
        # k-reciprocal neighbors
        forward_k_neigh_index = initial_rank[i, :k1 + 1]
        backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
        fi = np.where(backward_k_neigh_index == i)[0]
        k_reciprocal_index = forward_k_neigh_index[fi]
        k_reciprocal_expansion_index = k_reciprocal_index
        for j in range(len(k_reciprocal_index)):
            candidate = k_reciprocal_index[j]
            candidate_forward_k_neigh_index = initial_rank[candidate, :int(
                np.around(k1 / 2)) + 1]
            candidate_backward_k_neigh_index = initial_rank[
                candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1]
            fi_candidate = np.where(
                candidate_backward_k_neigh_index == candidate)[0]
            candidate_k_reciprocal_index = candidate_forward_k_neigh_index[
                fi_candidate]
            if len(
                    np.intersect1d(candidate_k_reciprocal_index,
                                   k_reciprocal_index)) > 2 / 3 * len(
                                       candidate_k_reciprocal_index):
                k_reciprocal_expansion_index = np.append(
                    k_reciprocal_expansion_index, candidate_k_reciprocal_index)

        k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
        weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
        V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
    original_dist = original_dist[:query_num, ]
    if k2 != 1:
        V_qe = np.zeros_like(V, dtype=np.float16)
        for i in range(all_num):
            V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
        V = V_qe
        del V_qe
    del initial_rank
    invIndex = []
    for i in range(gallery_num):
        invIndex.append(np.where(V[:, i] != 0)[0])

    jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
    for i in range(query_num):
        temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16)
        indNonZero = np.where(V[i, :] != 0)[0]
        indImages = [invIndex[ind] for ind in indNonZero]
        for j in range(len(indNonZero)):
            temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
                V[i, indNonZero[j]], V[indImages[j], indNonZero[j]])
        jaccard_dist[i] = 1 - temp_min / (2 - temp_min)

    final_dist = jaccard_dist * (1 - lambda_value
                                 ) + original_dist * lambda_value
    del original_dist
    del V
    del jaccard_dist
    final_dist = final_dist[:query_num, query_num:]
    final_dist = paddle.to_tensor(final_dist)
    return final_dist