faq_2021_s2.md 20.6 KB
Newer Older
1
# PaddleClas 相关常见问题汇总 - 2021 第 2 季
C
cuicheng01 已提交
2

3
## 写在前面
C
cuicheng01 已提交
4

5
* 我们收集整理了开源以来在 issues 和用户群中的常见问题并且给出了简要解答,旨在为广大用户提供一些参考,也希望帮助大家少走一些弯路。
C
cuicheng01 已提交
6

7
* 图像分类、识别、检索领域大佬众多,模型和论文更新速度也很快,本文档回答主要依赖有限的项目实践,难免挂一漏万,如有遗漏和不足,也希望有识之士帮忙补充和修正,万分感谢。
C
cuicheng01 已提交
8

9
## 目录
10

S
sibo2rr 已提交
11
* [1. 理论篇](#1)
12
    * [1.1 PaddleClas 基础知识](#1.1)
S
sibo2rr 已提交
13 14 15 16 17 18 19 20 21 22 23 24
    * [1.2 骨干网络和预训练模型库](#1.2)
    * [1.3 图像分类](#1.3)
    * [1.4 通用检测模块](#1.4)
    * [1.5 图像识别模块](#1.5)
    * [1.6 检索模块](#1.6)
* [2. 实战篇](#2)
    * [2.1 训练与评估共性问题](#2.1)
    * [2.2 图像分类](#2.2)
    * [2.3 通用检测模块](#2.3)
    * [2.4 图像识别模块](#2.4)
    * [2.5 检索模块](#2.5)
    * [2.6 模型预测部署](#2.6)
25

S
sibo2rr 已提交
26
<a name="1"></a>
27 28
## 1. 理论篇

S
sibo2rr 已提交
29
<a name="1.1"></a>
30
### 1.1 PaddleClas 基础知识
31

32 33
#### Q1.1.1 PaddleClas 和 PaddleDetection 区别
**A**:PaddleClas 是一个兼主体检测、图像分类、图像检索于一体的图像识别 repo,用于解决大部分图像识别问题,用户可以很方便的使用 PaddleClas 来解决小样本、多类别的图像识别问题。PaddleDetection 提供了目标检测、关键点检测、多目标跟踪等能力,方便用户定位图像中的感兴趣的点和区域,被广泛应用于工业质检、遥感图像检测、无人巡检等项目。
C
cuicheng01 已提交
34

35 36 37 38 39 40 41 42 43 44 45
#### Q1.1.3: Momentum 优化器中的 momentum 参数是什么意思呢?
**A**: Momentum 优化器是在 SGD 优化器的基础上引入了“动量”的概念。在 SGD 优化器中,在 `t+1` 时刻,参数 `w` 的更新可表示为:
```latex
w_t+1 = w_t - lr * grad
```
其中,`lr` 为学习率,`grad` 为此时参数 `w` 的梯度。在引入动量的概念后,参数 `w` 的更新可表示为:
```latex
v_t+1 = m * v_t + lr * grad
w_t+1 = w_t - v_t+1
```
其中,`m` 即为动量 `momentum`,表示累积动量的加权值,一般取 `0.9`,当取值小于 `1` 时,则越早期的梯度对当前的影响越小,例如,当动量参数 `m``0.9` 时,在 `t` 时刻,`t-5` 的梯度加权值为 `0.9 ^ 5 = 0.59049`,而 `t-2` 时刻的梯度加权值为 `0.9 ^ 2 = 0.81`。因此,太过“久远”的梯度信息对当前的参考意义很小,而“最近”的历史梯度信息对当前影响更大,这也是符合直觉的。
C
cuicheng01 已提交
46

S
sibo2rr 已提交
47
![](../../images/faq/momentum.jpeg)
C
cuicheng01 已提交
48

49
通过引入动量的概念,在参数更新时考虑了历史更新的影响,因此可以加快收敛速度,也改善了 `SGD` 优化器带来的损失(cost、loss)震荡问题。
C
cuicheng01 已提交
50

51
#### Q1.1.4: PaddleClas 是否有 `Fixing the train-test resolution discrepancy` 这篇论文的实现呢?
52
**A**: 目前 PaddleClas 没有实现。如果需要,可以尝试自己修改代码。简单来说,该论文所提出的思想是使用较大分辨率作为输入,对已经训练好的模型最后的 FC 层进行 fine-tune。具体操作上,首先在较低分辨率的数据集上对模型网络进行训练,完成训练后,对网络除最后的 FC 层外的其他层的权重设置参数 `stop_gradient=True`,然后使用较大分辨率的输入对网络进行 fine-tune 训练。
C
cuicheng01 已提交
53

S
sibo2rr 已提交
54
<a name="1.2"></a>
55
### 1.2 骨干网络和预训练模型库
C
cuicheng01 已提交
56

S
sibo2rr 已提交
57
<a name="1.3"></a>
58
### 1.3 图像分类
C
cuicheng01 已提交
59

60 61
#### Q1.3.1: PaddleClas 有提供调整图片亮度,对比度,饱和度,色调等方面的数据增强吗?
**A**:PaddleClas 提供了多种数据增广方式,可分为 3 类:
62 63 64
1. 图像变换类: AutoAugment, RandAugment;  
2. 图像裁剪类: CutOut、RandErasing、HideAndSeek、GridMask;
3. 图像混叠类:Mixup, Cutmix.
C
cuicheng01 已提交
65

66
其中,RandAngment 提供了多种数据增强方式的随机组合,可以满足亮度、对比度、饱和度、色调等多方面的数据增广需求。
C
cuicheng01 已提交
67

S
sibo2rr 已提交
68
<a name="1.4"></a>
69
### 1.4 通用检测模块
C
cuicheng01 已提交
70

71
#### Q1.4.1 主体检测是每次只输出一个主体检测框吗?
72
**A**:主体检测这块的输出数量是可以通过配置文件配置的。在配置文件中 Global.threshold 控制检测的阈值,小于该阈值的检测框被舍弃,Global.max_det_results 控制最大返回的结果数,这两个参数共同决定了输出检测框的数量。
C
cuicheng01 已提交
73

74
#### Q1.4.2 训练主体检测模型的数据是如何选择的?换成更小的模型会有损精度吗?
75
**A**:训练数据是在 COCO、Object365、RPC、LogoDet 等公开数据集中随机抽取的子集。目前我们在 2.3 版本中推出了超轻量的主体检测模型,具体信息可以参考[主体检测](../image_recognition_pipeline/mainbody_detection.md#2-模型选择)。关于主体检测模型的更多信息请参考[主体检测](../image_recognition_pipeline/mainbody_detection.md)
C
cuicheng01 已提交
76

77
#### Q1.4.3: 目前使用的主体检测模型检测在某些场景中会有误检?
78
**A**:目前的主体检测模型训练时使用了 COCO、Object365、RPC、LogoDet 等公开数据集,如果被检测数据是类似工业质检等于常见类别差异较大的数据,需要基于目前的检测模型重新微调训练。
C
cuicheng01 已提交
79

S
sibo2rr 已提交
80
<a name="1.5"></a>
81
### 1.5 图像识别模块
C
cuicheng01 已提交
82

83 84
#### Q1.5.1 使用 `circle loss` 还需加 `triplet loss` 吗?
**A**`circle loss` 是统一了样本对学习和分类学习的两种形式,如果是分类学习的形式的话,可以增加 `triplet loss`
C
cuicheng01 已提交
85

86
#### Q1.5.2 如果不是识别开源的四个方向的图片,该使用哪个识别模型?
87
**A**:建议使用商品识别模型,一来是因为商品覆盖的范围比较广,被识别的图片是商品的概率更大,二来是因为商品识别模型的训练数据使用了 5 万类别的数据,泛化能力更好,特征会更鲁棒一些。
C
cuicheng01 已提交
88

89 90
#### Q1.5.3 最后使用 512 维的向量,为什么不用 1024 或者其他维度的呢?
**A**:使用维度小的向量,为了加快计算,在实际使用过程中,可能使用 128 甚至更小。一般来说,512 的维度已经够大,能充分表示特征了。
C
cuicheng01 已提交
91

S
sibo2rr 已提交
92
<a name="1.6"></a>
93
### 1.6 检索模块
C
cuicheng01 已提交
94

95 96
#### Q1.6.1 PaddleClas 目前使用的 Möbius 向量检索算法支持类似于 faiss 的那种 index.add()的功能吗? 另外,每次构建新的图都要进行 train 吗?这里的 train 是为了检索加速还是为了构建相似的图?
**A**:目前在 release/2.3 分支已经支持 faiss 检索模块,并且不再支持 Möbius。关于 Möbius 提供的检索算法,是一种基于图的近似最近邻搜索算法,目前支持两种距离计算方式:inner product 和 L2 distance,但是 Möbius 暂不支持 faiss 中提供的 index.add 功能,如果需要增加检索库的内容,需要从头重新构建新的 index. 在每次构建 index 时,检索算法内部执行的操作是一种类似于 train 的过程,不同于 faiss 提供的 train 接口。因此需要 faiss 模块的话,可以使用 release/2.3 分支,需要 Möbius 的话,目前需要回退到 release/2.2 分支。
C
cuicheng01 已提交
97

98 99
#### Q1.6.2: PaddleClas 图像识别用于 Eval 的配置文件中,`Query` 和 `Gallery` 配置具体是用于做什么呢?
**A**: `Query``Gallery` 均为数据集配置,其中 `Gallery` 用于配置底库数据,`Query` 用于配置验证集。在进行 Eval 时,首先使用模型对 `Gallery` 底库数据进行前向计算特征向量,特征向量用于构建底库,然后模型对 `Query` 验证集中的数据进行前向计算特征向量,再与底库计算召回率等指标。
C
cuicheng01 已提交
100

S
sibo2rr 已提交
101
<a name="2"></a>
102
## 2. 实战篇
C
cuicheng01 已提交
103

S
sibo2rr 已提交
104
<a name="2.1"></a>
105
### 2.1 训练与评估共性问题
C
cuicheng01 已提交
106

107 108
#### Q2.1.1 PaddleClas 的 `train_log` 文件在哪里?
**A**:在保存权重的路径中存放了 `train.log`
C
cuicheng01 已提交
109

110
#### Q2.1.2 模型训练出 nan,为什么?
C
cuicheng01 已提交
111
**A**
112 113
1.确保正确加载预训练模型, 最简单的加载方式添加参数 `-o Arch.pretrained=True` 即可;
2.模型微调时,学习率不要太大,如设置 0.001 就好。
C
cuicheng01 已提交
114

115
#### Q2.1.3 可以对视频中每一帧画面进行逐帧预测吗?
116
**A**:可以,但目前 PaddleClas 并不支持视频输入。可以尝试修改一下 PaddleClas 代码,或者预先将视频逐帧转为图像存储,再使用 PaddleClas 进行预测。
C
cuicheng01 已提交
117

118
#### Q2.1.4: 数据预处理中,不想对输入数据进行裁剪,该如何设置?或者如何设置剪裁的尺寸。
119
**A**: PaddleClas 支持的数据预处理算子可在这里查看:`ppcls/data/preprocess/__init__.py`,所有支持的算子均可在配置文件中进行配置,配置的算子名称需要和算子类名一致,参数与对应算子类的构造函数参数一致。如不需要对图像裁剪,则可去掉 `CropImage``RandCropImage`,使用 `ResizeImage` 替换即可,可通过其参数设置不同的 resize 方式,使用 `size` 参数则直接将图像缩放至固定大小,使用 `resize_short` 参数则会维持图像宽高比进行缩放。设置裁剪尺寸时,可通过 `CropImage` 算子的 `size` 参数,或 `RandCropImage` 算子的 `size` 参数。
120 121 122 123 124 125 126 127 128 129 130 131

#### Q2.1.5: PaddlePaddle 安装后,使用报错,无法导入 paddle 下的任何模块(import paddle.xxx),是为什么呢?
**A**: 首先可以使用以下代码测试 Paddle 是否安装正确:
```python
import paddle
paddle.utils.install_check.run_check(
```
正确安装时,通常会有如下提示:
```
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
```
如未能安装成功,则会有相应问题的提示。
132
另外,在同时安装 CPU 版本和 GPU 版本 Paddle 后,由于两个版本存在冲突,需要将两个版本全部卸载,然后重新安装所需要的版本。
133

134 135
#### Q2.1.6: 使用 PaddleClas 训练时,如何设置仅保存最优模型?不想保存中间模型。
**A**: PaddleClas 在训练过程中,会保存/更新以下三类模型:
136
1. 最新的模型(`latest.pdopt``latest.pdparams``latest.pdstates`),当训练意外中断时,可使用最新保存的模型恢复训练;
137
2. 最优的模型(`best_model.pdopt``best_model.pdparams``best_model.pdstates`);
138
3. 训练过程中,一个 epoch 结束时的断点(`epoch_xxx.pdopt``epoch_xxx.pdparams``epoch_xxx.pdstates`)。训练配置文件中 `Global.save_interval` 字段表示该模型的保存间隔。将该字段设置大于总 epochs 数,则不再保存中间断点模型。
139

140 141 142 143 144
#### Q2.1.7: 在训练时,出现如下报错信息:`ERROR: Unexpected segmentation fault encountered in DataLoader workers.`,如何排查解决问题呢?
**A**:尝试将训练配置文件中的字段 `num_workers` 设置为 `0`;尝试将训练配置文件中的字段 `batch_size` 调小一些;检查数据集格式和配置文件中的数据集路径是否正确。

#### Q2.1.8: 如何在训练时使用 `Mixup` 和 `Cutmix` ?
**A**
T
Tingquan Gao 已提交
145
* `Mixup` 的使用方法请参考 [Mixup](../../../ppcls/configs/ImageNet/DataAugment/ResNet50_Mixup.yaml#L63-L65)`Cuxmix` 请参考 [Cuxmix](../../../ppcls/configs/ImageNet/DataAugment/ResNet50_Cutmix.yaml#L63-L65)
146

T
Tingquan Gao 已提交
147
* 使用 `Mixup``Cutmix` 做训练时无法计算训练的精度(Acc)指标,因此需要在配置文件中取消 `Metric.Train.TopkAcc` 字段,可参考 [Metric.Train.TopkAcc](../../../ppcls/configs/ImageNet/DataAugment/ResNet50_Cutmix.yaml#L125-L128)
148

149
#### Q2.1.9: 训练配置 yaml 文件中,字段 `Global.pretrain_model` 和 `Global.checkpoints` 分别用于配置什么呢?
150 151
**A**
* 当需要 `fine-tune` 时,可以通过字段 `Global.pretrain_model` 配置预训练模型权重文件的路径,预训练模型权重文件后缀名通常为 `.pdparams`
152
* 在训练过程中,训练程序会自动保存每个 epoch 结束时的断点信息,包括优化器信息 `.pdopt` 和模型权重信息 `.pdparams`。在训练过程意外中断等情况下,需要恢复训练时,可以通过字段 `Global.checkpoints` 配置训练过程中保存的断点信息文件,例如通过配置 `checkpoints: ./output/ResNet18/epoch_18` 即可恢复 18 epoch 训练结束时的断点信息,PaddleClas 将自动加载 `epoch_18.pdopt``epoch_18.pdparams`,从 19 epoch 继续训练。
153

S
sibo2rr 已提交
154
<a name="2.2"></a>
155 156
### 2.2 图像分类

157
#### Q2.2.1 在 SSLD 中,大模型在 500M 数据上预训练后蒸馏小模型,然后在 1M 数据上蒸馏 finetune 小模型,具体步骤是怎样做的?
C
cuicheng01 已提交
158
**A**:步骤如下:
159 160 161
1. 基于 facebook 开源的 `ResNeXt101-32x16d-wsl` 模型去蒸馏得到了 `ResNet50-vd` 模型;
2. 用这个 `ResNet50-vd`,在 500W 数据集上去蒸馏 `MobilNetV3`
3. 考虑到 500W 的数据集的分布和 100W 的数据分布不完全一致,所以这块,在 100W 上的数据上又 finetune 了一下,精度有微弱的提升。
C
cuicheng01 已提交
162

163 164
#### Q2.2.2 训练 SwinTransformer,loss 出现 nan
**A**:训练 SwinTransformer 时,请使用版本大于等于 `2.1.1``Paddle`,并且加载我们提供的预训练模型,学习率也不宜过大。
C
cuicheng01 已提交
165

S
sibo2rr 已提交
166
<a name="2.3"></a>
167
### 2.3 通用检测模块
C
cuicheng01 已提交
168

169 170
#### Q2.3.1 为什么有一些图片检测出的结果就是原图?
**A**:主体检测模型会返回检测框,但事实上为了让后续的识别模型更加准确,在返回检测框的同时也返回了原图。后续会根据原图或者检测框与库中的图片的相似度排序,相似度最高的库中图片的标签即为被识别图片的标签。
C
cuicheng01 已提交
171

172
#### Q2.3.2:在直播场景中,需要提供一个直播即时识别画面,能够在延迟几秒内找到特征目标物并用框圈起,这个可以实现吗?
173
**A**:要达到实时的检测效果,需要检测速度达到实时性的要求;PP-YOLO 是 Paddle 团队提供的轻量级目标检测模型,检测速度和精度达到了很好的平衡,可以试试 PP-YOLO 来做检测. 关于 PP-YOLO 的使用,可以参照:[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/configs/ppyolo/README_cn.md)
C
cuicheng01 已提交
174

175 176
#### Q2.3.3: 对于未知的标签,加入 gallery dataset 可以用于后续的分类识别(无需训练),但是如果前面的检测模型对于未知的标签无法定位检测出来,是否还是要训练前面的检测模型?
**A**:如果检测模型在自己的数据集上表现不佳,需要在自己的检测数据集上再 finetune 下
C
cuicheng01 已提交
177

S
sibo2rr 已提交
178
<a name="2.4"></a>
179
### 2.4 图像识别模块
C
cuicheng01 已提交
180

181 182
#### Q2.4.1: 识别模块预测时报 `Illegal instruction` 错?
**A**:如果使用的是 release/2.2 分支,建议更新为 release/2.3 分支,在 release/2.3 分支中,我们使用 faiss 检索模块替换了 Möbius 检索模型,具体可以参考[向量检索教程](../../../deploy/vector_search/README.md)。如仍存在问题,可以在用户微信群中联系我们,也可以在 GitHub 提 issue。
C
cuicheng01 已提交
183

184
#### Q2.4.2: 识别模型怎么在预训练模型的基础上进行微调训练?
T
Tingquan Gao 已提交
185
**A**:识别模型的微调训练和分类模型的微调训练类似,识别模型可以加载商品的预训练模型,训练过程可以参考[识别模型训练](../../zh_CN/models_training/recognition.md),后续我们也会持续细化这块的文档。
B
Bin Lu 已提交
186

187 188
#### Q2.4.3: 训练 metric learning 时,每个 epoch 中,无法跑完所有 mini-batch,为什么?
**A**:在训练 metric learning 时,使用的 Sampler 是 DistributedRandomIdentitySampler,该 Sampler 不会采样全部的图片,导致会让每一个 epoch 采样的数据不是所有的数据,所以无法跑完显示的 mini-batch 是正常现象。该问题在 release/2.3 分支已经优化,请更新到 release/2.3 使用。
B
Bin Lu 已提交
189

190
#### Q2.4.4: 有些图片没有识别出结果,为什么?
191
**A**:在配置文件(如 inference_product.yaml)中,`IndexProcess.score_thres` 中会控制被识别的图片与库中的图片的余弦相似度的最小值。当余弦相似度小于该值时,不会打印结果。您可以根据自己的实际数据调整该值。
B
Bin Lu 已提交
192

S
sibo2rr 已提交
193
<a name="2.5"></a>
194
### 2.5 检索模块
B
Bin Lu 已提交
195

196 197
#### Q2.5.1: 添加图片后建索引报 `assert text_num >= 2` 错?
**A**:请确保 data_file.txt 中图片路径和图片名称中间的间隔为单个 table,而不是空格。
B
Bin Lu 已提交
198

199
#### Q2.5.2: 新增底库数据需要重新构建索引吗?
200
**A**:从 release/2.3 分支起,我们使用 faiss 检索模块替换了 Möbius 检索模型,已经支持在不构建底库的前提下新增底库数据,具体可以参考[向量检索教程](../../../deploy/vector_search/README.md)
B
Bin Lu 已提交
201

202 203
#### Q2.5.3: Mac 重新编译 index.so 时报错如下:clang: error: unsupported option '-fopenmp', 该如何处理?
**A**:如果使用的是 release/2.2 分支,建议更新为 release/2.3 分支,在 release/2.3 分支中,我们使用 faiss 检索模块替换了 Möbius 检索模型,具体可以参考[向量检索教程](../../../deploy/vector_search/README.md)。如仍存在问题,可以在用户微信群中联系我们,也可以在 GitHub 提 issue。
B
Bin Lu 已提交
204

205
#### Q2.5.4: 在 build 检索底库时,参数 `pq_size` 应该如何设置?
206
**A**`pq_size` 是 PQ 检索算法的参数。PQ 检索算法可以简单理解为“分层”检索算法,`pq_size` 是每层的“容量”,因此该参数的设置会影响检索性能,不过,在底库总数据量不太大(小于 10000 张)的情况下,这个参数对性能的影响很小,因此对于大多数使用场景而言,在构建底库时无需修改该参数。关于 PQ 检索算法的更多内容,可以查看相关[论文](https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf)
207

S
sibo2rr 已提交
208
<a name="2.6"></a>
209
### 2.6 模型预测部署
B
Bin Lu 已提交
210

211 212
#### Q2.6.1: hub serving 方式启动某个模块,怎么添加该模块的参数呢?
**A**:具体可以参考 [hub serving 参数](../../../deploy/hubserving/clas/params.py)
B
Bin Lu 已提交
213

214 215 216 217 218 219
#### Q2.6.2: 导出inference模型进行预测部署,准确率异常,为什么呢?
**A**: 该问题通常是由于在导出时未能正确加载模型参数导致的,首先检查模型导出时的日志,是否存在类似下述内容:
```
UserWarning: Skip loading for ***. *** is not found in the provided dict.
```
如果存在,则说明模型权重未能加载成功,请进一步检查配置文件中的 `Global.pretrained_model` 字段,是否正确配置了模型权重文件的路径。模型权重文件后缀名通常为 `pdparams`,注意在配置该路径时无需填写文件后缀名。
220 221

#### Q2.6.3: 如何将模型转为 `ONNX` 格式?
222
**A**:Paddle 支持两种转 ONNX 格式模型的方式,且依赖于 `paddle2onnx` 工具,首先需要安装 `paddle2onnx`
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

```shell
pip install paddle2onnx
```

* 从 inference model 转为 ONNX 格式模型:

    以动态图导出的 `combined` 格式 inference model(包含 `.pdmodel` 和 `.pdiparams` 两个文件)为例,使用以下命令进行模型格式转换:
    ```shell
    paddle2onnx --model_dir ${model_path}  --model_filename  ${model_path}/inference.pdmodel --params_filename ${model_path}/inference.pdiparams --save_file ${save_path}/model.onnx --enable_onnx_checker True
    ```
    上述命令中:
    * `model_dir`:该参数下需要包含 `.pdmodel` 和 `.pdiparams` 两个文件;
    * `model_filename`:该参数用于指定参数 `model_dir` 下的 `.pdmodel` 文件路径;
    * `params_filename`:该参数用于指定参数 `model_dir` 下的 `.pdiparams` 文件路径;
    * `save_file`:该参数用于指定转换后的模型保存目录路径。

    关于静态图导出的非 `combined` 格式的 inference model(通常包含文件 `__model__` 和多个参数文件)转换模型格式,以及更多参数说明请参考 paddle2onnx 官方文档 [paddle2onnx](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_zh.md#%E5%8F%82%E6%95%B0%E9%80%89%E9%A1%B9)。

242
* 直接从模型组网代码导出 ONNX 格式模型:
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    以动态图模型组网代码为例,模型类为继承于 `paddle.nn.Layer` 的子类,代码如下所示:

    ```python
    import paddle
    from paddle.static import InputSpec

    class SimpleNet(paddle.nn.Layer):
        def __init__(self):
            pass
        def forward(self, x):
            pass

    net = SimpleNet()
    x_spec = InputSpec(shape=[None, 3, 224, 224], dtype='float32', name='x')
    paddle.onnx.export(layer=net, path="./SimpleNet", input_spec=[x_spec])
    ```
    其中:
    * `InputSpec()` 函数用于描述模型输入的签名信息,包括输入数据的 `shape`、`type` 和 `name`(可省略);
littletomatodonkey's avatar
littletomatodonkey 已提交
262
    * `paddle.onnx.export()` 函数需要指定模型组网对象 `net`,导出模型的保存路径 `save_path`,模型的输入数据描述 `input_spec`。
263

264
    需要注意,`paddlepaddle` 版本需大于 `2.0.0`。关于 `paddle.onnx.export()` 函数的更多参数说明请参考 [paddle.onnx.export](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/onnx/export_cn.html#export)。