regnet.py 11.1 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
19 20
import math

W
WuHaobo 已提交
21 22 23
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
W
WuHaobo 已提交
24 25
import math
import numpy as np
W
WuHaobo 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

__all__ = [
    "RegNetX_200MF", "RegNetX_4GF", "RegNetX_32GF", "RegNetY_200MF",
    "RegNetY_4GF", "RegNetY_32GF"
]


class RegNet():
    def __init__(self, w_a, w_0, w_m, d, group_w, bot_mul, q=8, se_on=False):
        self.w_a = w_a
        self.w_0 = w_0
        self.w_m = w_m
        self.d = d
        self.q = q
        self.group_w = group_w
        self.bot_mul = bot_mul
        # Stem type
        self.stem_type = "simple_stem_in"
        # Stem width
        self.stem_w = 32
        # Block type
        self.block_type = "res_bottleneck_block"
        # Stride of each stage
        self.stride = 2
        # Squeeze-and-Excitation (RegNetY)
        self.se_on = se_on
        self.se_r = 0.25

    def quantize_float(self, f, q):
        """Converts a float to closest non-zero int divisible by q."""
        return int(round(f / q) * q)

    def adjust_ws_gs_comp(self, ws, bms, gs):
        """Adjusts the compatibility of widths and groups."""
        ws_bot = [int(w * b) for w, b in zip(ws, bms)]
        gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)]
        ws_bot = [
            self.quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)
        ]
        ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)]
        return ws, gs

    def get_stages_from_blocks(self, ws, rs):
        """Gets ws/ds of network at each stage from per block values."""
        ts = [
            w != wp or r != rp
            for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs)
        ]
        s_ws = [w for w, t in zip(ws, ts[:-1]) if t]
        s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist()
        return s_ws, s_ds

    def generate_regnet(self, w_a, w_0, w_m, d, q=8):
        """Generates per block ws from RegNet parameters."""
        assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
        ws_cont = np.arange(d) * w_a + w_0
        ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
        ws = w_0 * np.power(w_m, ks)
        ws = np.round(np.divide(ws, q)) * q
        num_stages, max_stage = len(np.unique(ws)), ks.max() + 1
        ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist()
        return ws, num_stages, max_stage, ws_cont

    def init_weights(self, op_type, filter_size=0, num_channels=0, name=None):
        if op_type == 'conv':
            fan_out = num_channels * filter_size * filter_size
            param_attr = ParamAttr(
                name=name + "_weights",
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=math.sqrt(2.0 / fan_out)))
            bias_attr = False
        elif op_type == 'bn':
            param_attr = ParamAttr(
                name=name + "_scale",
                initializer=fluid.initializer.Constant(0.0))
            bias_attr = ParamAttr(
                name=name + "_offset",
                initializer=fluid.initializer.Constant(0.0))
        elif op_type == 'final_bn':
            param_attr = ParamAttr(
                name=name + "_scale",
                initializer=fluid.initializer.Constant(1.0))
            bias_attr = ParamAttr(
                name=name + "_offset",
                initializer=fluid.initializer.Constant(0.0))
        return param_attr, bias_attr

    def net(self, input, class_dim=1000):
        # Generate RegNet ws per block
        b_ws, num_s, max_s, ws_cont = self.generate_regnet(
            self.w_a, self.w_0, self.w_m, self.d, self.q)
        # Convert to per stage format
        ws, ds = self.get_stages_from_blocks(b_ws, b_ws)
        # Generate group widths and bot muls
        gws = [self.group_w for _ in range(num_s)]
        bms = [self.bot_mul for _ in range(num_s)]
        # Adjust the compatibility of ws and gws
        ws, gws = self.adjust_ws_gs_comp(ws, bms, gws)
        # Use the same stride for each stage
        ss = [self.stride for _ in range(num_s)]
        # Use SE for RegNetY
        se_r = self.se_r

        # Construct the model
        # Group params by stage
        stage_params = list(zip(ds, ws, ss, bms, gws))
        # Construct the stem
        conv = self.conv_bn_layer(
            input=input,
            num_filters=self.stem_w,
            filter_size=3,
            stride=2,
            padding=1,
            act='relu',
            name="stem_conv")
        # Construct the stages
        for block, (d, w_out, stride, bm, gw) in enumerate(stage_params):
            for i in range(d):
                # Stride apply to the first block of the stage
                b_stride = stride if i == 0 else 1
                conv_name = 's' + str(block + 1) + '_b' + str(i +
                                                              1)  # chr(97 + i)
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=w_out,
                    stride=b_stride,
                    bm=bm,
                    gw=gw,
                    se_r=self.se_r,
                    name=conv_name)
        pool = fluid.layers.pool2d(
            input=conv, pool_type='avg', global_pooling=True)
        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=ParamAttr(
                name="fc_0.w_0",
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=0.01)),
            bias_attr=ParamAttr(
                name="fc_0.b_0", initializer=fluid.initializer.Constant(0.0)))
        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      padding=0,
                      act=None,
                      name=None,
                      final_bn=False):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            act=None,
            name=name + '.conv2d.output.1')
        bn_name = name + '_bn'
W
WuHaobo 已提交
189

W
WuHaobo 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=bn_name + '.output.1',
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance', )

    def shortcut(self, input, ch_out, stride, name):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            return self.conv_bn_layer(
                input=input,
                num_filters=ch_out,
                filter_size=1,
                stride=stride,
                padding=0,
                act=None,
                name=name)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, bm, gw, se_r, name):
        # Compute the bottleneck width
        w_b = int(round(num_filters * bm))
        # Compute the number of groups
        num_gs = w_b // gw
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=w_b,
            filter_size=1,
            stride=1,
            padding=0,
            act='relu',
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=w_b,
            filter_size=3,
            stride=stride,
            padding=1,
            groups=num_gs,
            act='relu',
            name=name + "_branch2b")
        # Squeeze-and-Excitation (SE)
        if self.se_on:
            w_se = int(round(input.shape[1] * se_r))
            conv1 = self.squeeze_excitation(
                input=conv1,
                num_channels=w_b,
                reduction_channels=w_se,
                name=name + "_branch2se")

        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            name=name + "_branch2c",
            final_bn=True)

        short = self.shortcut(
            input, num_filters, stride, name=name + "_branch1")

        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')

    def squeeze_excitation(self,
                           input,
                           num_channels,
                           reduction_channels,
                           name=None):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        fan_out = num_channels
        squeeze = fluid.layers.conv2d(
            input=pool,
            num_filters=reduction_channels,
            filter_size=1,
            act='relu',
            param_attr=ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=math.sqrt(2.0 / fan_out)),
                name=name + '_sqz_weights'),
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
        excitation = fluid.layers.conv2d(
            input=squeeze,
            num_filters=num_channels,
            filter_size=1,
            act='sigmoid',
            param_attr=ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=math.sqrt(2.0 / fan_out)),
                name=name + '_exc_weights'),
            bias_attr=ParamAttr(name=name + '_exc_offset'))
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


def RegNetX_200MF():
    model = RegNet(
        w_a=36.44, w_0=24, w_m=2.49, d=13, group_w=8, bot_mul=1.0, q=8)
    return model


def RegNetX_4GF():
    model = RegNet(
        w_a=38.65, w_0=96, w_m=2.43, d=23, group_w=40, bot_mul=1.0, q=8)
    return model


def RegNetX_32GF():
    model = RegNet(
        w_a=69.86, w_0=320, w_m=2.0, d=23, group_w=168, bot_mul=1.0, q=8)
    return model


def RegNetY_200MF():
    model = RegNet(
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        se_on=True)
    return model


def RegNetY_4GF():
    model = RegNet(
        w_a=31.41,
        w_0=96,
        w_m=2.24,
        d=22,
        group_w=64,
        bot_mul=1.0,
        q=8,
        se_on=True)
    return model


def RegNetY_32GF():
    model = RegNet(
        w_a=115.89,
        w_0=232,
        w_m=2.53,
        d=20,
        group_w=232,
        bot_mul=1.0,
        q=8,
        se_on=True)
    return model