resnet.py 8.8 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, Dropout
littletomatodonkey's avatar
littletomatodonkey 已提交
24
from paddle.nn.initializer import Uniform
W
WuHaobo 已提交
25 26 27

import math

28
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
W
WuHaobo 已提交
29 30


littletomatodonkey's avatar
littletomatodonkey 已提交
31
class ConvBNLayer(nn.Layer):
W
WuHaobo 已提交
32 33 34 35 36 37
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
38 39
                 act=None,
                 name=None):
W
WuHaobo 已提交
40 41
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
42
        self._conv = Conv2d(
littletomatodonkey's avatar
littletomatodonkey 已提交
43 44 45
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
46 47 48
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
49
            weight_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
50
            bias_attr=False)
51 52 53 54 55 56 57 58 59 60 61
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
W
WuHaobo 已提交
62 63 64 65 66 67 68

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
69
class BottleneckBlock(nn.Layer):
70 71 72 73 74 75
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
W
WuHaobo 已提交
76 77 78 79 80 81
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
82 83
            act="relu",
            name=name + "_branch2a")
W
WuHaobo 已提交
84 85 86 87 88
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
89 90
            act="relu",
            name=name + "_branch2b")
W
WuHaobo 已提交
91 92 93 94
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
95 96
            act=None,
            name=name + "_branch2c")
W
WuHaobo 已提交
97 98 99 100 101 102

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
103 104
                stride=stride,
                name=name + "_branch1")
W
WuHaobo 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

littletomatodonkey's avatar
littletomatodonkey 已提交
120
        y = paddle.elementwise_add(x=short, y=conv2, act="relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
121
        return y
122 123


littletomatodonkey's avatar
littletomatodonkey 已提交
124
class BasicBlock(nn.Layer):
125 126 127 128 129 130
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
131
        super(BasicBlock, self).__init__()
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
165
        y = paddle.elementwise_add(x=short, y=conv1, act="relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
166
        return y
W
WuHaobo 已提交
167

W
WuHaobo 已提交
168

littletomatodonkey's avatar
littletomatodonkey 已提交
169
class ResNet(nn.Layer):
W
WuHaobo 已提交
170 171 172 173
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

        self.layers = layers
174
        supported_layers = [18, 34, 50, 101, 152]
W
WuHaobo 已提交
175
        assert layers in supported_layers, \
W
WuHaobo 已提交
176 177
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
178

179 180 181
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
W
WuHaobo 已提交
182 183 184 185 186
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
187 188
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
W
WuHaobo 已提交
189 190
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
191 192
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
193 194 195
            num_filters=64,
            filter_size=7,
            stride=2,
196 197
            act="relu",
            name="conv1")
W
WuHaobo 已提交
198
        self.pool2d_max = Pool2D(
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            pool_size=3, pool_stride=2, pool_padding=1, pool_type="max")

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
229
                    basic_block = self.add_sublayer(
230
                        conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
231
                        BasicBlock(
232 233 234 235 236 237
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
238
                    self.block_list.append(basic_block)
239
                    shortcut = True
W
WuHaobo 已提交
240

W
WuHaobo 已提交
241 242 243
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

244
        self.pool2d_avg_channels = num_channels[-1] * 2
W
WuHaobo 已提交
245

246
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
W
WuHaobo 已提交
247 248

        self.out = Linear(
249
            self.pool2d_avg_channels,
W
WuHaobo 已提交
250
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
251
            weight_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
252
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
253
            bias_attr=ParamAttr(name="fc_0.b_0"))
W
WuHaobo 已提交
254

W
WuHaobo 已提交
255 256 257
    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
258 259
        for block in self.block_list:
            y = block(y)
W
WuHaobo 已提交
260
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
261
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
W
WuHaobo 已提交
262 263
        y = self.out(y)
        return y
W
WuHaobo 已提交
264

W
WuHaobo 已提交
265

266 267
def ResNet18(**args):
    model = ResNet(layers=18, **args)
W
WuHaobo 已提交
268 269 270
    return model


271 272
def ResNet34(**args):
    model = ResNet(layers=34, **args)
W
WuHaobo 已提交
273 274 275
    return model


276 277
def ResNet50(**args):
    model = ResNet(layers=50, **args)
W
WuHaobo 已提交
278 279 280
    return model


281 282
def ResNet101(**args):
    model = ResNet(layers=101, **args)
W
WuHaobo 已提交
283 284 285
    return model


286 287
def ResNet152(**args):
    model = ResNet(layers=152, **args)
W
WuHaobo 已提交
288
    return model