ResNet50.yaml 3.5 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: "./output/"
  device: "gpu"
  class_num: 431
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 160
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: "./inference"

# model architecture
D
dongshuilong 已提交
19 20 21
Arch:
  name: "RecModel"
  Backbone: 
D
dongshuilong 已提交
22 23 24 25 26 27 28 29
    name: "ResNet50_last_stage_stride1"
    pretrained: True
  BackboneStoplayer:
    name: "adaptive_avg_pool2d_1"
  Neck:
    name: "VehicleNeck"
    in_channels: 2048
    out_channels: 512
D
dongshuilong 已提交
30 31 32 33 34 35
  Head:
    name: "ArcMargin"  
    embedding_size: 512
    class_num: 431
    margin: 0.15
    scale: 32
D
dongshuilong 已提交
36 37 38 39 40 41 42 43 44
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
    - TripletLossV2:
        weight: 1.0
        margin: 0.5
D
dongshuilong 已提交
45 46 47
  Eval:
    - CELoss:
        weight: 1.0
D
dongshuilong 已提交
48 49 50 51 52 53 54

Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: MultiStepDecay
    learning_rate: 0.01
D
dongshuilong 已提交
55
    milestones: [30, 60, 70, 80, 90, 100, 120, 140]
D
dongshuilong 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    gamma: 0.5
    verbose: False
    last_epoch: -1
  regularizer:
    name: 'L2'
    coeff: 0.0005


# data loader for train and eval
DataLoader:
  Train:
    dataset:
        name: "CompCars"
        image_root: "/work/dataset/CompCars/image/"
        label_root: "/work/dataset/CompCars/label/"
        bbox_crop: True
        cls_label_path: "/work/dataset/CompCars/train_test_split/classification/train_label.txt"
        transform_ops:
          - ResizeImage:
              size: 224
          - RandFlipImage:
              flip_code: 1
          - AugMix:
              prob: 0.5
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
          - RandomErasing:
              EPSILON: 0.5
              sl: 0.02
              sh: 0.4
              r1: 0.3
              mean: [0., 0., 0.]

    sampler:
        name: DistributedRandomIdentitySampler
D
dongshuilong 已提交
94
        batch_size: 64
D
dongshuilong 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        num_instances: 2
        drop_last: False
        shuffle: True
    loader:
        num_workers: 6
        use_shared_memory: False

  Eval:
    # TOTO: modify to the latest trainer
    dataset: 
        name: "CompCars"
        image_root: "/work/dataset/CompCars/image/"
        label_root: "/work/dataset/CompCars/label/"
        cls_label_path: "/work/dataset/CompCars/train_test_split/classification/test_label.txt"
        bbox_crop: True
        transform_ops:
          - ResizeImage:
              size: 224
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
    sampler:
        name: DistributedBatchSampler
        batch_size: 64
        drop_last: False
        shuffle: False
    loader:
        num_workers: 6
        use_shared_memory: False

Infer:
  infer_imgs: "docs/images/whl/demo.jpg"
  batch_size: 10
  transforms:
      - DecodeImage:
          to_rgb: True
          channel_first: False
      - ResizeImage:
          resize_short: 256
      - CropImage:
          size: 224
      - NormalizeImage:
          scale: 1.0/255.0
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: ''
      - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"

Metric:
    Train:
    - Topk:
        k: [1, 5]
    Eval:
    - Topk:
        k: [1, 5]