README_en.md 6.4 KB
Newer Older
L
littletomatodonkey 已提交
1
[简体中文](README_ch.md) | English
W
weishengyu 已提交
2 3 4 5 6

# PaddleClas

## Introduction

L
lilithzhou 已提交
7
PaddleClas is an image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios.
W
weishengyu 已提交
8

L
lilithzhou 已提交
9
**Recent updates**
W
weishengyu 已提交
10

11
- 🔥🔥🔥: 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 24 pretrained models of LeViT, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
W
weishengyu 已提交
12 13 14 15
- [more](./docs/en/update_history_en.md)

## Features

L
lilithzhou 已提交
16 17
- A practical image recognition system consist of detection, feature learning and retrieval modules, widely applicable to all types of image recognition tasks.
Four sample solutions are provided, including product recognition, vehicle recognition, logo recognition and animation character recognition.
W
weishengyu 已提交
18

19
- Rich library of pre-trained models: Provide a total of 150 ImageNet pre-trained models in 33 series, among which 6 selected series of models support fast structural modification.
W
weishengyu 已提交
20

L
lilithzhou 已提交
21
- Comprehensive and easy-to-use feature learning components: 12 metric learning methods are integrated and can be combined and switched at will through configuration files.
W
weishengyu 已提交
22

L
lilithzhou 已提交
23
- SSLD knowledge distillation: The 14 classification pre-training models generally improved their accuracy by more than 3%; among them, the ResNet50_vd model achieved a Top-1 accuracy of 84.0% on the Image-Net-1k dataset and the Res2Net200_vd pre-training model achieved a Top-1 accuracy of 85.1%.
W
weishengyu 已提交
24

L
lilithzhou 已提交
25
- Data augmentation: Provide 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, etc.  with detailed introduction, code replication and evaluation of effectiveness in a unified experimental environment.
W
weishengyu 已提交
26

L
littletomatodonkey 已提交
27

W
weishengyu 已提交
28

L
LaraStuStu 已提交
29

L
lilithzhou 已提交
30
<div align="center">
L
littletomatodonkey 已提交
31
<img src="./docs/images/recognition_en.gif"  width = "400" />
L
lilithzhou 已提交
32
</div>
W
weishengyu 已提交
33

D
dyning 已提交
34

L
lilithzhou 已提交
35
## Welcome to Join the Technical Exchange Group
W
weishengyu 已提交
36

L
lilithzhou 已提交
37
* You can also scan the QR code below to join the PaddleClas WeChat group to get more efficient answers to your questions and to communicate with developers from all walks of life. We look forward to hearing from you.
W
weishengyu 已提交
38 39

<div align="center">
W
weishengyu 已提交
40
<img src="./docs/images/wx_group.jpeg"  width = "200" />
W
weishengyu 已提交
41 42
</div>

L
littletomatodonkey 已提交
43
## Quick Start
L
littletomatodonkey 已提交
44
Quick experience of image recognition:[Link](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
45 46 47

## Tutorials

B
Bin Lu 已提交
48
- [Quick Installation](./docs/en/tutorials/install_en.md)
W
weishengyu 已提交
49
- [Quick Start of Recognition](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
50 51
- [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems)
- [Demo images](#Demo_images)
W
weishengyu 已提交
52
- Algorithms Introduction
W
weishengyu 已提交
53
    - [Backbone Network and Pre-trained Model Library](./docs/en/ImageNet_models.md)
L
littletomatodonkey 已提交
54
    - [Mainbody Detection](./docs/en/application/mainbody_detection_en.md)
W
weishengyu 已提交
55 56 57 58 59 60
    - [Image Classification](./docs/en/tutorials/image_classification_en.md)
    - [Feature Learning](./docs/en/application/feature_learning_en.md)
        - [Product Recognition](./docs/en/application/product_recognition_en.md)
        - [Vehicle Recognition](./docs/en/application/vehicle_recognition_en.md)
        - [Logo Recognition](./docs/en/application/logo_recognition_en.md)
        - [Animation Character Recognition](./docs/en/application/cartoon_character_recognition_en.md)
W
weishengyu 已提交
61
    - [Vector Search](./deploy/vector_search/README.md)
L
lilithzhou 已提交
62
- Models Training/Evaluation
W
weishengyu 已提交
63
    - [Image Classification](./docs/en/tutorials/getting_started_en.md)
W
weishengyu 已提交
64
    - [Feature Learning](./docs/en/tutorials/getting_started_retrieval_en.md)
W
weishengyu 已提交
65
- Inference Model Prediction
W
weishengyu 已提交
66
    - [Python Inference](./docs/en/inference.md)
W
weishengyu 已提交
67 68 69 70 71
    - [C++ Inference](./deploy/cpp/readme_en.md)(only support classification for now, recognition coming soon)
- Model Deploy (only support classification for now, recognition coming soon)
    - [Hub Serving Deployment](./deploy/hubserving/readme_en.md)
    - [Mobile Deployment](./deploy/lite/readme_en.md)
    - [Inference Using whl](./docs/en/whl_en.md)
L
lilithzhou 已提交
72
- Advanced Tutorial
W
weishengyu 已提交
73 74 75
    - [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Model Quantization](./docs/en/extension/paddle_quantization_en.md)
    - [Data Augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
W
weishengyu 已提交
76 77 78
- [License](#License)
- [Contribution](#Contribution)

W
weishengyu 已提交
79
<a name="Introduction_to_Image_Recognition_Systems"></a>
L
lilithzhou 已提交
80
## Introduction to Image Recognition Systems
W
weishengyu 已提交
81

L
lilithzhou 已提交
82
<div align="center">
L
littletomatodonkey 已提交
83
<img src="./docs/images/mainpage/recognition_pipeline_en.png"  width = "400" />
L
lilithzhou 已提交
84
</div>
W
weishengyu 已提交
85

L
lilithzhou 已提交
86 87 88 89
Image recognition can be divided into three steps:
- (1)Identify region proposal for target objects through a detection model;
- (2)Extract features for each region proposal;
- (3)Search features in the retrieval database and output results;
W
weishengyu 已提交
90

L
lilithzhou 已提交
91
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
W
weishengyu 已提交
92

W
weishengyu 已提交
93
<a name="Demo_images"></a>
L
LaraStuStu 已提交
94
## Demo images [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images)
95 96
- Product recognition
<div align="center">
L
LaraStuStu 已提交
97
<img src="https://user-images.githubusercontent.com/18028216/122769644-51604f80-d2d7-11eb-8290-c53b12a5c1f6.gif"  width = "400" />
98 99 100 101
</div>

- Cartoon character recognition
<div align="center">
L
LaraStuStu 已提交
102
<img src="https://user-images.githubusercontent.com/18028216/122769746-6b019700-d2d7-11eb-86df-f1d710999ba6.gif"  width = "400" />
103 104 105 106
</div>

- Logo recognition
<div align="center">
L
LaraStuStu 已提交
107
<img src="https://user-images.githubusercontent.com/18028216/122769837-7fde2a80-d2d7-11eb-9b69-04140e9d785f.gif"  width = "400" />
108
</div>
W
weishengyu 已提交
109

110 111
- Car recognition
<div align="center">
L
LaraStuStu 已提交
112
<img src="https://user-images.githubusercontent.com/18028216/122769916-8ec4dd00-d2d7-11eb-8c60-42d89e25030c.gif"  width = "400" />
113 114 115
</div>

<a name="License"></a>
L
lilithzhou 已提交
116 117
## License
PaddleClas is released under the Apache 2.0 license <a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>
W
weishengyu 已提交
118 119 120 121 122 123


<a name="Contribution"></a>
## Contribution
Contributions are highly welcomed and we would really appreciate your feedback!!

L
lilithzhou 已提交
124

W
weishengyu 已提交
125 126 127
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
L
lilithzhou 已提交
128
- Thank [FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563) to parse and summarize the PaddleClas code.