dpn.py 13.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
19
import numpy as np
littletomatodonkey's avatar
littletomatodonkey 已提交
20
import sys
21
import paddle
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
22 23
from paddle import ParamAttr
import paddle.nn as nn
24 25
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
26
from paddle.nn.initializer import Uniform
27 28 29

import math

C
cuicheng01 已提交
30 31
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

littletomatodonkey's avatar
littletomatodonkey 已提交
32 33 34 35 36 37 38 39 40 41 42 43
MODEL_URLS = {
    "DPN68":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams",
    "DPN92":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams",
    "DPN98":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams",
    "DPN107":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams",
    "DPN131":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams",
}
C
cuicheng01 已提交
44 45

__all__ = list(MODEL_URLS.keys())
46 47


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
48
class ConvBNLayer(nn.Layer):
49 50 51 52 53 54 55 56 57 58 59
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

60
        self._conv = Conv2D(
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
61 62 63
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
64 65 66
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
67
            weight_attr=ParamAttr(name=name + "_weights"),
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
83
class BNACConvLayer(nn.Layer):
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()
        self.num_channels = num_channels

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

104
        self._conv = Conv2D(
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
105 106 107
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
108 109 110
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
111
            weight_attr=ParamAttr(name=name + "_weights"),
112 113 114 115 116 117 118 119
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
120
class DualPathFactory(nn.Layer):
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def __init__(self,
                 num_channels,
                 num_1x1_a,
                 num_3x3_b,
                 num_1x1_c,
                 inc,
                 G,
                 _type='normal',
                 name=None):
        super(DualPathFactory, self).__init__()

        self.num_1x1_c = num_1x1_c
        self.inc = inc
        self.name = name

        kw = 3
        kh = 3
        pw = (kw - 1) // 2
        ph = (kh - 1) // 2

        # type
        if _type == 'proj':
            key_stride = 1
            self.has_proj = True
        elif _type == 'down':
            key_stride = 2
            self.has_proj = True
        elif _type == 'normal':
            key_stride = 1
            self.has_proj = False
        else:
            print("not implemented now!!!")
            sys.exit(1)
W
WuHaobo 已提交
154

155 156
        data_in_ch = sum(num_channels) if isinstance(num_channels,
                                                     list) else num_channels
W
WuHaobo 已提交
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        if self.has_proj:
            self.c1x1_w_func = BNACConvLayer(
                num_channels=data_in_ch,
                num_filters=num_1x1_c + 2 * inc,
                filter_size=(1, 1),
                pad=(0, 0),
                stride=(key_stride, key_stride),
                name=name + "_match")

        self.c1x1_a_func = BNACConvLayer(
            num_channels=data_in_ch,
            num_filters=num_1x1_a,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv1")

        self.c3x3_b_func = BNACConvLayer(
            num_channels=num_1x1_a,
            num_filters=num_3x3_b,
            filter_size=(kw, kh),
            pad=(pw, ph),
            stride=(key_stride, key_stride),
            groups=G,
            name=name + "_conv2")
W
WuHaobo 已提交
182

183 184 185 186 187 188 189 190 191 192
        self.c1x1_c_func = BNACConvLayer(
            num_channels=num_3x3_b,
            num_filters=num_1x1_c + inc,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv3")

    def forward(self, input):
        # PROJ
        if isinstance(input, list):
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
193
            data_in = paddle.concat([input[0], input[1]], axis=1)
194 195 196 197 198
        else:
            data_in = input

        if self.has_proj:
            c1x1_w = self.c1x1_w_func(data_in)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
199 200
            data_o1, data_o2 = paddle.split(
                c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], axis=1)
201 202 203 204 205 206 207 208
        else:
            data_o1 = input[0]
            data_o2 = input[1]

        c1x1_a = self.c1x1_a_func(data_in)
        c3x3_b = self.c3x3_b_func(c1x1_a)
        c1x1_c = self.c1x1_c_func(c3x3_b)

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
209 210
        c1x1_c1, c1x1_c2 = paddle.split(
            c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], axis=1)
211 212

        # OUTPUTS
213
        summ = paddle.add(x=data_o1, y=c1x1_c1)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
214
        dense = paddle.concat([data_o2, c1x1_c2], axis=1)
215 216
        # tensor, channels
        return [summ, dense]
W
WuHaobo 已提交
217

218

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
219
class DPN(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
220
    def __init__(self, layers=68, class_num=1000):
221 222
        super(DPN, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
223
        self._class_num = class_num
224 225

        args = self.get_net_args(layers)
W
WuHaobo 已提交
226 227 228 229 230 231 232 233 234 235
        bws = args['bw']
        inc_sec = args['inc_sec']
        rs = args['r']
        k_r = args['k_r']
        k_sec = args['k_sec']
        G = args['G']
        init_num_filter = args['init_num_filter']
        init_filter_size = args['init_filter_size']
        init_padding = args['init_padding']

236
        self.k_sec = k_sec
W
WuHaobo 已提交
237

238 239
        self.conv1_x_1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
240
            num_filters=init_num_filter,
L
littletomatodonkey 已提交
241
            filter_size=init_filter_size,
W
WuHaobo 已提交
242
            stride=2,
L
littletomatodonkey 已提交
243
            pad=init_padding,
W
WuHaobo 已提交
244
            act='relu',
245 246
            name="conv1")

247
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
248

249 250 251
        num_channel_dpn = init_num_filter

        self.dpn_func_list = []
W
WuHaobo 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        #conv2 - conv5
        match_list, num = [], 0
        for gc in range(4):
            bw = bws[gc]
            inc = inc_sec[gc]
            R = (k_r * bw) // rs[gc]
            if gc == 0:
                _type1 = 'proj'
                _type2 = 'normal'
                match = 1
            else:
                _type1 = 'down'
                _type2 = 'normal'
                match = match + k_sec[gc - 1]
            match_list.append(match)
267 268 269 270 271 272 273 274 275 276 277 278 279
            self.dpn_func_list.append(
                self.add_sublayer(
                    "dpn{}".format(match),
                    DualPathFactory(
                        num_channels=num_channel_dpn,
                        num_1x1_a=R,
                        num_3x3_b=R,
                        num_1x1_c=bw,
                        inc=inc,
                        G=G,
                        _type=_type1,
                        name="dpn" + str(match))))
            num_channel_dpn = [bw, 3 * inc]
W
WuHaobo 已提交
280 281 282 283 284

            for i_ly in range(2, k_sec[gc] + 1):
                num += 1
                if num in match_list:
                    num += 1
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
                self.dpn_func_list.append(
                    self.add_sublayer(
                        "dpn{}".format(num),
                        DualPathFactory(
                            num_channels=num_channel_dpn,
                            num_1x1_a=R,
                            num_3x3_b=R,
                            num_1x1_c=bw,
                            inc=inc,
                            G=G,
                            _type=_type2,
                            name="dpn" + str(num))))

                num_channel_dpn = [
                    num_channel_dpn[0], num_channel_dpn[1] + inc
                ]

        out_channel = sum(num_channel_dpn)

        self.conv5_x_x_bn = BatchNorm(
            num_channels=sum(num_channel_dpn),
            act="relu",
W
WuHaobo 已提交
307 308 309
            param_attr=ParamAttr(name='final_concat_bn_scale'),
            bias_attr=ParamAttr('final_concat_bn_offset'),
            moving_mean_name='final_concat_bn_mean',
310 311
            moving_variance_name='final_concat_bn_variance')

312
        self.pool2d_avg = AdaptiveAvgPool2D(1)
W
WuHaobo 已提交
313 314

        stdv = 0.01
315 316 317

        self.out = Linear(
            out_channel,
littletomatodonkey's avatar
littletomatodonkey 已提交
318
            class_num,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
319 320
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
321
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334
    def forward(self, input):
        conv1_x_1 = self.conv1_x_1_func(input)
        convX_x_x = self.pool2d_max(conv1_x_1)

        dpn_idx = 0
        for gc in range(4):
            convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
            dpn_idx += 1
            for i_ly in range(2, self.k_sec[gc] + 1):
                convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
                dpn_idx += 1

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
335
        conv5_x_x = paddle.concat(convX_x_x, axis=1)
336 337 338
        conv5_x_x = self.conv5_x_x_bn(conv5_x_x)

        y = self.pool2d_avg(conv5_x_x)
L
littletomatodonkey 已提交
339
        y = paddle.flatten(y, start_axis=1, stop_axis=-1)
340 341
        y = self.out(y)
        return y
W
WuHaobo 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

    def get_net_args(self, layers):
        if layers == 68:
            k_r = 128
            G = 32
            k_sec = [3, 4, 12, 3]
            inc_sec = [16, 32, 32, 64]
            bw = [64, 128, 256, 512]
            r = [64, 64, 64, 64]
            init_num_filter = 10
            init_filter_size = 3
            init_padding = 1
        elif layers == 92:
            k_r = 96
            G = 32
            k_sec = [3, 4, 20, 3]
            inc_sec = [16, 32, 24, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 64
            init_filter_size = 7
            init_padding = 3
        elif layers == 98:
            k_r = 160
            G = 40
            k_sec = [3, 6, 20, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 96
            init_filter_size = 7
            init_padding = 3
        elif layers == 107:
            k_r = 200
            G = 50
            k_sec = [4, 8, 20, 3]
            inc_sec = [20, 64, 64, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        elif layers == 131:
            k_r = 160
            G = 40
            k_sec = [4, 8, 28, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        else:
            raise NotImplementedError
        net_arg = {
            'k_r': k_r,
            'G': G,
            'k_sec': k_sec,
            'inc_sec': inc_sec,
            'bw': bw,
            'r': r
        }
        net_arg['init_num_filter'] = init_num_filter
        net_arg['init_filter_size'] = init_filter_size
        net_arg['init_padding'] = init_padding

        return net_arg
littletomatodonkey's avatar
littletomatodonkey 已提交
409 410


C
cuicheng01 已提交
411 412 413 414 415 416 417 418 419 420
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
littletomatodonkey's avatar
littletomatodonkey 已提交
421
        )
C
cuicheng01 已提交
422 423 424 425 426


def DPN68(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=68, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN68"])
W
WuHaobo 已提交
427 428 429
    return model


C
cuicheng01 已提交
430 431 432
def DPN92(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=92, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN92"])
W
WuHaobo 已提交
433 434 435
    return model


C
cuicheng01 已提交
436 437 438
def DPN98(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=98, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN98"])
W
WuHaobo 已提交
439 440 441
    return model


C
cuicheng01 已提交
442 443 444
def DPN107(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=107, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN107"])
W
WuHaobo 已提交
445 446 447
    return model


C
cuicheng01 已提交
448 449 450
def DPN131(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=131, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN131"])
littletomatodonkey's avatar
littletomatodonkey 已提交
451
    return model