cswin_transformer.py 22.6 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Code was based on https://github.com/BR-IDL/PaddleViT/blob/develop/image_classification/CSwin/cswin.py

import copy
import numpy as np
import paddle
import paddle.nn as nn
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity

from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
    "CSWinTransformer_tiny_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_tiny_224_pretrained.pdparams",
    "CSWinTransformer_small_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_small_224_pretrained.pdparams",
    "CSWinTransformer_base_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_224_pretrained.pdparams",
    "CSWinTransformer_large_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_224_pretrained.pdparams",
    "CSWinTransformer_base_384":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_384_pretrained.pdparams",
    "CSWinTransformer_large_384":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_384_pretrained.pdparams",
}

__all__ = list(MODEL_URLS.keys())


class PatchEmbedding(nn.Layer):
    """CSwin Patch Embedding
    This patch embedding has a 7x7 conv + layernorm, the output tensor
    is reshaped to [Batch, H*W, embed_dim]. Note that the patch is applied
    by a conv with overlap (using patch_stride).
    Args:
        patch_stride: int, patch stride size, default: 4
        in_channels: int, number of channels of input image, default: 3
        embed_dim: int, output feature dimension, default: 96
    """

    def __init__(self, patch_stride=4, in_channels=3, embed_dim=96):
        super().__init__()
        self.patch_embed = nn.Conv2D(
            in_channels=in_channels,
            out_channels=embed_dim,
            kernel_size=7,
            stride=patch_stride,
            padding=2)

        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        x = self.patch_embed(
            x)  # [batch, embed_dim, h, w], h = w = image_size / 4
        x = x.flatten(start_axis=2, stop_axis=-1)  # [batch, embed_dim, h*w]
        x = x.transpose([0, 2, 1])  # [batch, h*w, embed_dim]
        x = self.norm(x)
        return x


class Mlp(nn.Layer):
    """ MLP module
    Impl using nn.Linear and activation is GELU, dropout is applied.
    Ops: fc -> act -> dropout -> fc -> dropout
    Attributes:
        fc1: nn.Linear
        fc2: nn.Linear
        act: GELU
        dropout1: dropout after fc1
        dropout2: dropout after fc2
    """

    def __init__(self, in_features, hidden_features, dropout):
        super().__init__()
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.fc2 = nn.Linear(hidden_features, in_features)
        self.act = nn.GELU()
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


def img2windows(img, h_split, w_split):
    """Convert input tensor into split stripes
    Args:
        img: tensor, image tensor with shape [B, C, H, W]
        h_split: int, splits width in height direction
        w_split: int, splits width in width direction
    Returns:
        out: tensor, splitted image
    """
    B, C, H, W = img.shape
    out = img.reshape([B, C, H // h_split, h_split, W // w_split, w_split])
    out = out.transpose(
        [0, 2, 4, 3, 5, 1])  # [B, H//h_split, W//w_split, h_split, w_split, C]
    out = out.reshape([-1, h_split * w_split,
                       C])  # [B, H//h_split, W//w_split, h_split*w_split, C]
    return out


def windows2img(img_splits, h_split, w_split, img_h, img_w):
    """Convert splitted stripes back
    Args:
        img_splits: tensor, image tensor with shape [B, C, H, W]
        h_split: int, splits width in height direction
        w_split: int, splits width in width direction
        img_h: int, original tensor height
        img_w: int, original tensor width
    Returns:
        img: tensor, original tensor
    """
C
cuicheng01 已提交
131 132
    B = paddle.to_tensor(img_splits.shape[0] //
                         (img_h // h_split * img_w // w_split), "int32")
C
cuicheng01 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    img = img_splits.reshape([
        B, img_h // h_split, img_w // w_split, h_split, w_split,
        img_splits.shape[-1]
    ])
    img = img.transpose(
        [0, 1, 3, 2, 4,
         5])  #[B,img_h//h_split, h_split, img_w//w_split, w_split,C]
    img = img.reshape(
        [B, img_h, img_w, img_splits.shape[-1]])  # [B, img_h, img_w, C]
    return img


class LePEAttention(nn.Layer):
    """Cross Shaped Window self-attention with Locally enhanced positional encoding"""

    def __init__(self,
                 dim,
                 resolution,
                 h_split=7,
                 w_split=7,
                 num_heads=8,
                 attention_dropout=0.,
                 dropout=0.,
                 qk_scale=None):
        super().__init__()
        self.dim = dim
        self.resolution = resolution
        self.num_heads = num_heads
        self.dim_head = dim // num_heads
        self.scale = qk_scale or self.dim_head**-0.5
        self.h_split = h_split
        self.w_split = w_split

        self.get_v = nn.Conv2D(
            in_channels=dim,
            out_channels=dim,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=dim)

        self.softmax = nn.Softmax(axis=-1)
        self.attn_dropout = nn.Dropout(attention_dropout)

    def im2cswin(self, x):
        B, HW, C = x.shape
        H = W = int(np.sqrt(HW))
        x = x.transpose([0, 2, 1])  # [B, C, H*W]
        x = x.reshape([B, C, H, W])  # [B, C, H, W]
        x = img2windows(x, self.h_split, self.w_split)
        x = x.reshape(
            [-1, self.h_split * self.w_split, self.num_heads, self.dim_head])
        x = x.transpose([0, 2, 1, 3])
        return x

    def get_lepe(self, x, func):
        """Locally Enhanced Positional Encoding (LePE)
        This module applies a depthwise conv on V and returns the lepe
        Args:
            x: tensor, the input tensor V
            func: nn.Layer, a depth wise conv of kernel 3 stride 1 and padding 1
        """
        B, HW, C = x.shape
        H = W = int(np.sqrt(HW))
        h_split = self.h_split
        w_split = self.w_split

        x = x.transpose([0, 2, 1])  # [B, C, H*W]
        x = x.reshape([B, C, H, W])  # [B, C, H, W]
        x = x.reshape([B, C, H // h_split, h_split, W // w_split, w_split])
        x = x.transpose(
            [0, 2, 4, 1, 3,
             5])  # [B, H//h_split, W//w_split, C, h_split, w_split]
        x = x.reshape(
            [-1, C, h_split,
             w_split])  # [B*(H//h_split)*(W//w_split), h_split, w_split]

        lepe = func(x)  # depth wise conv does not change shape
        #lepe = lepe.reshape([-1, self.num_heads, C // self.num_heads, h_split * w_split])
        lepe = lepe.reshape(
            [-1, self.num_heads, self.dim_head, h_split * w_split])
        lepe = lepe.transpose(
            [0, 1, 3, 2])  # [B, num_heads, h_spllit*w_split, dim_head]

        x = x.reshape([-1, self.num_heads, self.dim_head, h_split * w_split])
        x = x.transpose(
            [0, 1, 3, 2])  # [B, num_heads, h_split*wsplit, dim_head]
        return x, lepe

    def forward(self, q, k, v):
        B, HW, C = q.shape
        H = W = self.resolution
        q = self.im2cswin(q)
        k = self.im2cswin(k)
        v, lepe = self.get_lepe(v, self.get_v)

        q = q * self.scale
        attn = paddle.matmul(q, k, transpose_y=True)
        attn = self.softmax(attn)
        attn = self.attn_dropout(attn)

        z = paddle.matmul(attn, v)
        z = z + lepe
        z = z.transpose([0, 2, 1, 3])
        z = z.reshape([-1, self.h_split * self.w_split, C])

        z = windows2img(z, self.h_split, self.w_split, H, W)
        z = z.reshape([B, z.shape[1] * z.shape[2], C])
        return z


class CSwinBlock(nn.Layer):
    """CSwin Block
    CSwin block contains a LePE attention modual, a linear projection,
    a mlp layer, and related norms layers. In the first 3 stages, the
    LePE attention moduals used 2 branches, where horizontal and
    vertical split stripes are used for self attention and a concat
    op is applied to combine the outputs. The last stage does not
    have branche in LePE attention.
    Args:
        dim: int, input feature dimension
        input_resolution: int, input feature spatial size.
        num_heads: int, num of attention heads in current stage
        split_size: int, the split size in current stage
        mlp_ratio: float, mlp ratio, mlp_hidden_dim = mlp_ratio * mlp_in_dim, default: 4.
        qkv_bias: bool, if set True, qkv projection will have bias, default: True
        qk_scale: float, if set, replace the orig qk_scale (dim_head ** -0.5), default: None
        dropout: float, dropout rate for linear projection, default: 0
        attention_dropout: float, dropout rate for attention, default: 0
        droppath: float, drop path rate, default: 0
        split_heads: bool, if True, split heads is applied (True for 1,2,3 stages), default: True
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 num_heads,
                 split_size=7,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 attention_dropout=0.,
                 dropout=0.,
                 droppath=0.,
                 split_heads=True):
        super().__init__()
        self.dim = dim
        # NOTE: here assume image_h == imgae_w
        self.input_resolution = (input_resolution, input_resolution)
        self.num_heads = num_heads
        self.dim_head = dim // num_heads
        self.mlp_ratio = mlp_ratio
        self.split_size = split_size
        self.norm1 = nn.LayerNorm(dim)
        self.qkv = nn.Linear(
            dim, dim * 3, bias_attr=None if qkv_bias else False)
        self.attns = nn.LayerList()
        self.split_heads = split_heads

        num_branches = 2 if split_heads else 1
        if split_heads:  # first 3 stages
            splits = [self.input_resolution[0],
                      self.split_size]  # horizantal splits
        else:  # last stage
            splits = [self.input_resolution[0], self.input_resolution[0]]
        for _ in range(num_branches):
            attn = LePEAttention(
                dim=dim // num_branches,
                resolution=input_resolution,
                h_split=splits[0],
                w_split=splits[1],
                num_heads=num_heads // num_branches,
                qk_scale=qk_scale,
                attention_dropout=attention_dropout,
                dropout=dropout)
            self.attns.append(copy.deepcopy(attn))
            # switch splits from horizantal to vertical
            # NOTE: may need to change for different H and W
            splits[0], splits[1] = splits[1], splits[0]

        self.proj = nn.Linear(dim, dim)
        self.drop_path = DropPath(droppath) if droppath > 0. else Identity()

        self.norm2 = nn.LayerNorm(dim)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=int(dim * mlp_ratio),
                       dropout=dropout)

    def chunk_qkv(self, x, chunks=1, axis=-1):
        x = x.chunk(chunks, axis=axis)
        return x

    def forward(self, x):
        H, W = self.input_resolution
        B, HW, C = x.shape
        # cswin attention
        h = x
        x = self.norm1(x)
        qkv = self.qkv(x).chunk(3, axis=-1)  # qkv is a tuple of [q, k, v]

        if self.split_heads:
            q, k, v = map(self.chunk_qkv, qkv,
                          (2, 2, 2))  # map requries list/tuple inputs
        else:
            q, k, v = map(lambda x: [x], qkv)

        if self.split_heads:  # first 3 stages
            h_attn = self.attns[0](q[0], k[0], v[0])
            w_attn = self.attns[1](q[1], k[1], v[1])
            attn = paddle.concat([h_attn, w_attn], axis=2)
        else:  # last stage
            attn = self.attns[0](q[0], k[0], v[0])
        attn = self.proj(attn)
        attn = self.drop_path(attn)
        x = h + attn
        # mlp + residual
        h = x
        x = self.norm2(x)
        x = self.mlp(x)
        x = self.drop_path(x)
        x = h + x
        return x


class MergeBlock(nn.Layer):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.conv = nn.Conv2D(
            in_channels=dim_in,
            out_channels=dim_out,
            kernel_size=3,
            stride=2,
            padding=1)
        self.norm = nn.LayerNorm(dim_out)

    def forward(self, x):
        B, HW, C = x.shape
        H = W = int(np.sqrt(HW))
        x = x.transpose([0, 2, 1])  # [B, C, HW]
        x = x.reshape([B, C, H, W])  # [B, C, H, W]
        x = self.conv(x)
        new_shape = [x.shape[0], x.shape[1],
                     x.shape[2] * x.shape[3]]  # [B, C', H*W]
        x = x.reshape(new_shape)  # [B, C', H*W]
        x = x.transpose([0, 2, 1])  # [B, H*W, C']
        x = self.norm(x)
        return x


class CSwinStage(nn.Layer):
    """ CSwin Stage, each stage contains multi blocks
    CSwin has 4 stages, the first 3 stages are using head split. The last
    stage does not have head split. There is a merge block between each
    2 stages.
    Args:
        dim: int, input feature dimension
        depth: int, number of blocks in current stage
        num_heads: int, num of attention heads in current stage
        split_size: int, the split size in current stage
        mlp_ratio: float, mlp ratio, mlp_hidden_dim = mlp_ratio * mlp_in_dim, default: 4.
        qkv_bias: bool, if set True, qkv projection will have bias, default: True
        qk_scale: float, if set, replace the orig qk_scale (dim_head ** -0.5), default: None
        dropout: float, dropout rate for linear projection, default: 0
        attention_dropout: float, dropout rate for attention, default: 0
        droppath: float, drop path rate, default: 0
        last_stage: bool, if current stage is the last stage, default: False
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 split_size,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 dropout=0.,
                 attention_dropout=0.,
                 droppath=0.,
                 last_stage=False):
        super().__init__()
        self.blocks = nn.LayerList()
        for i in range(depth):
            block = CSwinBlock(
                dim=dim,
                input_resolution=input_resolution,
                num_heads=num_heads,
                split_size=split_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attention_dropout=attention_dropout,
                dropout=dropout,
                droppath=droppath[i]
                if isinstance(droppath, list) else droppath,
                split_heads=not last_stage)
            self.blocks.append(copy.deepcopy(block))
        # last stage does not need merge layer
        self.merge = MergeBlock(
            dim_in=dim, dim_out=dim * 2) if not last_stage else Identity()

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.merge(x)
        return x


class CSwinTransformer(nn.Layer):
    """CSwin Transformer class
    Args:
        image_size: int, input image size, default: 224
        patch_stride: int, stride for patch embedding, default: 4
        in_channels: int, num of channels of input image, default: 3
        num_classes: int, num of classes, default: 1000
        embed_dim: int, embedding dim (patch embed out dim), default: 96
        depths: list/tuple(int), number of blocks in each stage, default: [2, 4, 32, 2]
        splits: list/tuple(int), the split number in each stage, default: [1, 2, 7, 7]
        num_heads: list/tuple(int), num of attention heads in each stage, default: [4, 8, 16, 32]
        mlp_ratio: float, mlp ratio, mlp_hidden_dim = mlp_ratio * mlp_in_dim, default: 4.
        qkv_bias: bool, if set True, qkv projection will have bias, default: True
        qk_scale: float, if set, replace the orig qk_scale (dim_head ** -0.5), default: None
        dropout: float, dropout rate for linear projection, default: 0
        attention_dropout: float, dropout rate for attention, default: 0
        droppath: float, drop path rate, default: 0
    """

    def __init__(self,
                 image_size=224,
                 patch_stride=4,
                 in_channels=3,
                 class_num=1000,
                 embed_dim=96,
                 depths=[2, 4, 32, 2],
                 splits=[1, 2, 7, 7],
                 num_heads=[4, 8, 16, 32],
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 dropout=0.,
                 attention_dropout=0.,
                 droppath=0.):
        super().__init__()
        # token embedding
        self.patch_embedding = PatchEmbedding(
            patch_stride=patch_stride,
            in_channels=in_channels,
            embed_dim=embed_dim)
        # drop path decay by stage
        depth_decay = [
            x.item() for x in paddle.linspace(0, droppath, sum(depths))
        ]
        dim = embed_dim
        resolution = image_size // 4
        self.stages = nn.LayerList()
        num_stages = len(depths)
        # construct CSwin stages: each stage has multiple blocks
        for stage_idx in range(num_stages):
            stage = CSwinStage(
                dim=dim,
                input_resolution=resolution,
                depth=depths[stage_idx],
                num_heads=num_heads[stage_idx],
                split_size=splits[stage_idx],
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                dropout=dropout,
                attention_dropout=attention_dropout,
                droppath=depth_decay[sum(depths[:stage_idx]):sum(
                    depths[:stage_idx + 1])],
                last_stage=stage_idx == num_stages - 1)
            self.stages.append(stage)
            if stage_idx != num_stages - 1:
                dim = dim * 2
                resolution = resolution // 2
        # last norm and classification head layers
        self.norm = nn.LayerNorm(dim)
        self.head = nn.Linear(dim, class_num)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward_features(self, x):
        x = self.patch_embedding(x)
        for stage in self.stages:
            x = stage(x)
        x = self.norm(x)
        return paddle.mean(x, axis=1)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def CSWinTransformer_tiny_224(pretrained=False, use_ssld=False, **kwargs):
    model = CSwinTransformer(
        image_size=224,
        embed_dim=64,
        depths=[1, 2, 21, 1],
        splits=[1, 2, 7, 7],
        num_heads=[2, 4, 8, 16],
        droppath=0.2,
        **kwargs)
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["CSWinTransformer_tiny_224"],
        use_ssld=use_ssld)
    return model


def CSWinTransformer_small_224(pretrained=False, use_ssld=False, **kwargs):
    model = CSwinTransformer(
        image_size=224,
        embed_dim=64,
        depths=[2, 4, 32, 2],
        splits=[1, 2, 7, 7],
        num_heads=[2, 4, 8, 16],
        droppath=0.4,
        **kwargs)
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["CSWinTransformer_small_224"],
        use_ssld=use_ssld)
    return model


def CSWinTransformer_base_224(pretrained=False, use_ssld=False, **kwargs):
    model = CSwinTransformer(
        image_size=224,
        embed_dim=96,
        depths=[2, 4, 32, 2],
        splits=[1, 2, 7, 7],
        num_heads=[4, 8, 16, 32],
        droppath=0.5,
        **kwargs)
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["CSWinTransformer_base_224"],
        use_ssld=use_ssld)
    return model


def CSWinTransformer_base_384(pretrained=False, use_ssld=False, **kwargs):
    model = CSwinTransformer(
        image_size=384,
        embed_dim=96,
        depths=[2, 4, 32, 2],
        splits=[1, 2, 12, 12],
        num_heads=[4, 8, 16, 32],
        droppath=0.5,
        **kwargs)
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["CSWinTransformer_base_384"],
        use_ssld=use_ssld)
    return model


def CSWinTransformer_large_224(pretrained=False, use_ssld=False, **kwargs):
    model = CSwinTransformer(
        image_size=224,
        embed_dim=144,
        depths=[2, 4, 32, 2],
        splits=[1, 2, 7, 7],
        num_heads=[6, 12, 24, 24],
        droppath=0.5,
        **kwargs)
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["CSWinTransformer_large_224"],
        use_ssld=use_ssld)
    return model


def CSWinTransformer_large_384(pretrained=False, use_ssld=False, **kwargs):
    model = CSwinTransformer(
        image_size=384,
        embed_dim=144,
        depths=[2, 4, 32, 2],
        splits=[1, 2, 12, 12],
        num_heads=[6, 12, 24, 24],
        droppath=0.5,
        **kwargs)
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["CSWinTransformer_large_384"],
        use_ssld=use_ssld)
    return model