learning_rate.py 11.2 KB
Newer Older
S
shippingwang 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
S
shippingwang 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
S
shippingwang 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dongshuilong 已提交
14 15 16
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

L
littletomatodonkey 已提交
17
from paddle.optimizer import lr
D
dongshuilong 已提交
18
from paddle.optimizer.lr import LRScheduler
W
WuHaobo 已提交
19 20


L
littletomatodonkey 已提交
21
class Linear(object):
W
WuHaobo 已提交
22
    """
L
littletomatodonkey 已提交
23
    Linear learning rate decay
W
WuHaobo 已提交
24
    Args:
L
littletomatodonkey 已提交
25 26 27 28 29
        lr (float): The initial learning rate. It is a python float number.
        epochs(int): The decay step size. It determines the decay cycle.
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
        power(float, optional): Power of polynomial. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
W
WuHaobo 已提交
30 31
    """

L
littletomatodonkey 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self,
                 learning_rate,
                 epochs,
                 step_each_epoch,
                 end_lr=0.0,
                 power=1.0,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Linear, self).__init__()
        self.learning_rate = learning_rate
        self.epochs = epochs * step_each_epoch
        self.end_lr = end_lr
        self.power = power
        self.last_epoch = last_epoch
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
W
WuHaobo 已提交
48

L
littletomatodonkey 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __call__(self):
        learning_rate = lr.PolynomialDecay(
            learning_rate=self.learning_rate,
            decay_steps=self.epochs,
            end_lr=self.end_lr,
            power=self.power,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
            learning_rate = lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.learning_rate,
                last_epoch=self.last_epoch)
        return learning_rate


class Cosine(object):
W
WuHaobo 已提交
67
    """
L
littletomatodonkey 已提交
68 69
    Cosine learning rate decay
    lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
W
WuHaobo 已提交
70 71 72 73
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
L
littletomatodonkey 已提交
74
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
W
WuHaobo 已提交
75 76
    """

L
littletomatodonkey 已提交
77 78 79 80 81 82 83 84 85 86 87 88
    def __init__(self,
                 learning_rate,
                 step_each_epoch,
                 epochs,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Cosine, self).__init__()
        self.learning_rate = learning_rate
        self.T_max = step_each_epoch * epochs
        self.last_epoch = last_epoch
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
W
WuHaobo 已提交
89

L
littletomatodonkey 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def __call__(self):
        learning_rate = lr.CosineAnnealingDecay(
            learning_rate=self.learning_rate,
            T_max=self.T_max,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
            learning_rate = lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.learning_rate,
                last_epoch=self.last_epoch)
        return learning_rate


class Step(object):
S
shippingwang 已提交
106
    """
L
littletomatodonkey 已提交
107
    Piecewise learning rate decay
S
shippingwang 已提交
108 109
    Args:
        step_each_epoch(int): steps each epoch
L
littletomatodonkey 已提交
110 111 112 113 114
        learning_rate (float): The initial learning rate. It is a python float number.
        step_size (int): the interval to update.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
S
shippingwang 已提交
115 116
    """

S
shippingwang 已提交
117
    def __init__(self,
L
littletomatodonkey 已提交
118 119
                 learning_rate,
                 step_size,
S
shippingwang 已提交
120
                 step_each_epoch,
L
littletomatodonkey 已提交
121 122 123
                 gamma,
                 warmup_epoch=0,
                 last_epoch=-1,
S
shippingwang 已提交
124
                 **kwargs):
L
littletomatodonkey 已提交
125 126 127 128 129 130
        super(Step, self).__init__()
        self.step_size = step_each_epoch * step_size
        self.learning_rate = learning_rate
        self.gamma = gamma
        self.last_epoch = last_epoch
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
S
shippingwang 已提交
131

L
littletomatodonkey 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def __call__(self):
        learning_rate = lr.StepDecay(
            learning_rate=self.learning_rate,
            step_size=self.step_size,
            gamma=self.gamma,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
            learning_rate = lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.learning_rate,
                last_epoch=self.last_epoch)
        return learning_rate


class Piecewise(object):
W
WuHaobo 已提交
149
    """
L
littletomatodonkey 已提交
150
    Piecewise learning rate decay
W
WuHaobo 已提交
151
    Args:
L
littletomatodonkey 已提交
152 153 154 155
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
        values(list): A list of learning rate values that will be picked during different epoch boundaries.
            The type of element in the list is python float.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
W
WuHaobo 已提交
156 157 158
    """

    def __init__(self,
L
littletomatodonkey 已提交
159 160 161 162 163 164 165 166 167 168 169
                 step_each_epoch,
                 decay_epochs,
                 values,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Piecewise, self).__init__()
        self.boundaries = [step_each_epoch * e for e in decay_epochs]
        self.values = values
        self.last_epoch = last_epoch
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
W
WuHaobo 已提交
170 171

    def __call__(self):
L
littletomatodonkey 已提交
172 173 174 175 176 177 178 179 180 181 182 183
        learning_rate = lr.PiecewiseDecay(
            boundaries=self.boundaries,
            values=self.values,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
            learning_rate = lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.values[0],
                last_epoch=self.last_epoch)
        return learning_rate
D
dongshuilong 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284


class MultiStepDecay(LRScheduler):
    """
    Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
    The algorithm can be described as the code below. 
    .. code-block:: text
        learning_rate = 0.5
        milestones = [30, 50]
        gamma = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005
    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . 
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
        
    Returns:
        ``MultiStepDecay`` instance to schedule learning rate.
    Examples:
        
        .. code-block:: python
            import paddle
            import numpy as np
            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(20):
                for batch_id in range(5):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)
            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(5):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
    """

    def __init__(self,
                 learning_rate,
                 milestones,
                 epochs,
                 step_each_epoch,
                 gamma=0.1,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
                % type(milestones))
        if not all([
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
        ]):
            raise ValueError('The elements of milestones must be incremented')
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')
        self.milestones = [x * step_each_epoch for x in milestones]
        self.gamma = gamma
        super(MultiStepDecay, self).__init__(learning_rate, last_epoch,
                                             verbose)

    def get_lr(self):
        for i in range(len(self.milestones)):
            if self.last_epoch < self.milestones[i]:
                return self.base_lr * (self.gamma**i)
        return self.base_lr * (self.gamma**len(self.milestones))