resnet.py 8.8 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from paddle.nn.initializer import Uniform
W
WuHaobo 已提交
26 27 28

import math

29
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
W
WuHaobo 已提交
30 31


littletomatodonkey's avatar
littletomatodonkey 已提交
32
class ConvBNLayer(nn.Layer):
W
WuHaobo 已提交
33 34 35 36 37 38
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
39 40
                 act=None,
                 name=None):
W
WuHaobo 已提交
41 42
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
43
        self._conv = Conv2d(
littletomatodonkey's avatar
littletomatodonkey 已提交
44 45 46
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
47 48 49
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
50
            weight_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
51
            bias_attr=False)
52 53 54 55 56 57 58 59 60 61 62
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
W
WuHaobo 已提交
63 64 65 66 67 68 69

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
70
class BottleneckBlock(nn.Layer):
71 72 73 74 75 76
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
W
WuHaobo 已提交
77 78 79 80 81 82
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
83 84
            act="relu",
            name=name + "_branch2a")
W
WuHaobo 已提交
85 86 87 88 89
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
90 91
            act="relu",
            name=name + "_branch2b")
W
WuHaobo 已提交
92 93 94 95
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
96 97
            act=None,
            name=name + "_branch2c")
W
WuHaobo 已提交
98 99 100 101 102 103

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
104 105
                stride=stride,
                name=name + "_branch1")
W
WuHaobo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

littletomatodonkey's avatar
littletomatodonkey 已提交
121
        y = paddle.elementwise_add(x=short, y=conv2, act="relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
122
        return y
123 124


littletomatodonkey's avatar
littletomatodonkey 已提交
125
class BasicBlock(nn.Layer):
126 127 128 129 130 131
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
132
        super(BasicBlock, self).__init__()
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
166
        y = paddle.elementwise_add(x=short, y=conv1, act="relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
167
        return y
W
WuHaobo 已提交
168

W
WuHaobo 已提交
169

littletomatodonkey's avatar
littletomatodonkey 已提交
170
class ResNet(nn.Layer):
W
WuHaobo 已提交
171 172 173 174
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

        self.layers = layers
175
        supported_layers = [18, 34, 50, 101, 152]
W
WuHaobo 已提交
176
        assert layers in supported_layers, \
W
WuHaobo 已提交
177 178
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
179

180 181 182
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
W
WuHaobo 已提交
183 184 185 186 187
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
188 189
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
W
WuHaobo 已提交
190 191
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
192 193
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
194 195 196
            num_filters=64,
            filter_size=7,
            stride=2,
197 198
            act="relu",
            name="conv1")
littletomatodonkey's avatar
littletomatodonkey 已提交
199
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
229
                    basic_block = self.add_sublayer(
230
                        conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
231
                        BasicBlock(
232 233 234 235 236 237
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
238
                    self.block_list.append(basic_block)
239
                    shortcut = True
W
WuHaobo 已提交
240

littletomatodonkey's avatar
littletomatodonkey 已提交
241
        self.pool2d_avg = AdaptiveAvgPool2d(1)
W
WuHaobo 已提交
242

243
        self.pool2d_avg_channels = num_channels[-1] * 2
W
WuHaobo 已提交
244

245
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
W
WuHaobo 已提交
246 247

        self.out = Linear(
248
            self.pool2d_avg_channels,
W
WuHaobo 已提交
249
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
250
            weight_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
251
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
252
            bias_attr=ParamAttr(name="fc_0.b_0"))
W
WuHaobo 已提交
253

W
WuHaobo 已提交
254 255 256
    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
257 258
        for block in self.block_list:
            y = block(y)
W
WuHaobo 已提交
259
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
260
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
W
WuHaobo 已提交
261 262
        y = self.out(y)
        return y
W
WuHaobo 已提交
263

W
WuHaobo 已提交
264

265 266
def ResNet18(**args):
    model = ResNet(layers=18, **args)
W
WuHaobo 已提交
267 268 269
    return model


270 271
def ResNet34(**args):
    model = ResNet(layers=34, **args)
W
WuHaobo 已提交
272 273 274
    return model


275 276
def ResNet50(**args):
    model = ResNet(layers=50, **args)
W
WuHaobo 已提交
277 278 279
    return model


280 281
def ResNet101(**args):
    model = ResNet(layers=101, **args)
W
WuHaobo 已提交
282 283 284
    return model


285 286
def ResNet152(**args):
    model = ResNet(layers=152, **args)
W
WuHaobo 已提交
287
    return model