resnet.py 8.8 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, Dropout
W
WuHaobo 已提交
24 25 26

import math

27
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
W
WuHaobo 已提交
28 29


littletomatodonkey's avatar
littletomatodonkey 已提交
30
class ConvBNLayer(nn.Layer):
W
WuHaobo 已提交
31 32 33 34 35 36
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
37 38
                 act=None,
                 name=None):
W
WuHaobo 已提交
39 40
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
41
        self._conv = Conv2d(
littletomatodonkey's avatar
littletomatodonkey 已提交
42 43 44
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
45 46 47
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
48
            weight_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
49
            bias_attr=False)
50 51 52 53 54 55 56 57 58 59 60
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
W
WuHaobo 已提交
61 62 63 64 65 66 67

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
68
class BottleneckBlock(nn.Layer):
69 70 71 72 73 74
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
W
WuHaobo 已提交
75 76 77 78 79 80
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
81 82
            act="relu",
            name=name + "_branch2a")
W
WuHaobo 已提交
83 84 85 86 87
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
88 89
            act="relu",
            name=name + "_branch2b")
W
WuHaobo 已提交
90 91 92 93
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
94 95
            act=None,
            name=name + "_branch2c")
W
WuHaobo 已提交
96 97 98 99 100 101

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
102 103
                stride=stride,
                name=name + "_branch1")
W
WuHaobo 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

littletomatodonkey's avatar
littletomatodonkey 已提交
119
        y = paddle.elementwise_add(x=short, y=conv2, act="relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
120
        return y
121 122


littletomatodonkey's avatar
littletomatodonkey 已提交
123
class BasicBlock(nn.Layer):
124 125 126 127 128 129
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
130
        super(BasicBlock, self).__init__()
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
164
        y = paddle.elementwise_add(x=short, y=conv1, act="relu")
littletomatodonkey's avatar
littletomatodonkey 已提交
165
        return y
W
WuHaobo 已提交
166

W
WuHaobo 已提交
167

littletomatodonkey's avatar
littletomatodonkey 已提交
168
class ResNet(nn.Layer):
W
WuHaobo 已提交
169 170 171 172
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

        self.layers = layers
173
        supported_layers = [18, 34, 50, 101, 152]
W
WuHaobo 已提交
174
        assert layers in supported_layers, \
W
WuHaobo 已提交
175 176
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
177

178 179 180
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
W
WuHaobo 已提交
181 182 183 184 185
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
186 187
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
W
WuHaobo 已提交
188 189
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
190 191
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
192 193 194
            num_filters=64,
            filter_size=7,
            stride=2,
195 196
            act="relu",
            name="conv1")
W
WuHaobo 已提交
197
        self.pool2d_max = Pool2D(
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            pool_size=3, pool_stride=2, pool_padding=1, pool_type="max")

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
228
                    basic_block = self.add_sublayer(
229
                        conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
230
                        BasicBlock(
231 232 233 234 235 236
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
237
                    self.block_list.append(basic_block)
238
                    shortcut = True
W
WuHaobo 已提交
239

W
WuHaobo 已提交
240 241 242
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

243
        self.pool2d_avg_channels = num_channels[-1] * 2
W
WuHaobo 已提交
244

245
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
W
WuHaobo 已提交
246 247

        self.out = Linear(
248
            self.pool2d_avg_channels,
W
WuHaobo 已提交
249
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
250 251
            weight_attr=ParamAttr(
                initializer=paddle.nn.initializer.Uniform(-stdv, stdv),
252 253
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))
W
WuHaobo 已提交
254

W
WuHaobo 已提交
255 256 257
    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
258 259
        for block in self.block_list:
            y = block(y)
W
WuHaobo 已提交
260
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
261
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
W
WuHaobo 已提交
262 263
        y = self.out(y)
        return y
W
WuHaobo 已提交
264

W
WuHaobo 已提交
265

266 267
def ResNet18(**args):
    model = ResNet(layers=18, **args)
W
WuHaobo 已提交
268 269 270
    return model


271 272
def ResNet34(**args):
    model = ResNet(layers=34, **args)
W
WuHaobo 已提交
273 274 275
    return model


276 277
def ResNet50(**args):
    model = ResNet(layers=50, **args)
W
WuHaobo 已提交
278 279 280
    return model


281 282
def ResNet101(**args):
    model = ResNet(layers=101, **args)
W
WuHaobo 已提交
283 284 285
    return model


286 287
def ResNet152(**args):
    model = ResNet(layers=152, **args)
W
WuHaobo 已提交
288
    return model