inception_v3.py 16.7 KB
Newer Older
F
Felix 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Felix 已提交
15
from __future__ import absolute_import, division, print_function
D
dongshuilong 已提交
16
import math
F
Felix 已提交
17 18 19 20 21 22 23 24
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
F
Felix 已提交
25
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
F
Felix 已提交
26

F
Felix 已提交
27
MODEL_URLS = {
D
dongshuilong 已提交
28 29
    "InceptionV3":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams"
F
Felix 已提交
30 31 32 33 34 35 36 37
}

__all__ = MODEL_URLS.keys()
'''
InceptionV3 config: dict.
    key: inception blocks of InceptionV3.
    values: conv num in different blocks.
'''
F
Felix 已提交
38
NET_CONFIG = {
D
dongshuilong 已提交
39 40 41 42 43
    "inception_a": [[192, 256, 288], [32, 64, 64]],
    "inception_b": [288],
    "inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]],
    "inception_d": [768],
    "inception_e": [1280, 2048]
F
Felix 已提交
44 45
}

D
dongshuilong 已提交
46

F
Felix 已提交
47 48 49 50 51 52 53 54
class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
F
Felix 已提交
55
                 act="relu"):
D
dongshuilong 已提交
56
        super().__init__()
F
Felix 已提交
57
        self.act = act
F
Felix 已提交
58 59 60 61 62 63 64 65
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)
D
dongshuilong 已提交
66
        self.bn = BatchNorm(num_filters)
F
Felix 已提交
67
        self.relu = nn.ReLU()
F
Felix 已提交
68

F
Felix 已提交
69 70
    def forward(self, x):
        x = self.conv(x)
D
dongshuilong 已提交
71
        x = self.bn(x)
F
Felix 已提交
72 73 74
        if self.act:
            x = self.relu(x)
        return x
F
Felix 已提交
75

D
dongshuilong 已提交
76

F
Felix 已提交
77 78
class InceptionStem(TheseusLayer):
    def __init__(self):
D
dongshuilong 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        super().__init__()
        self.conv_1a_3x3 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act="relu")
        self.conv_2a_3x3 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act="relu")
        self.conv_2b_3x3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            padding=1,
            act="relu")

        self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
        self.conv_3b_1x1 = ConvBNLayer(
            num_channels=64, num_filters=80, filter_size=1, act="relu")
        self.conv_4a_3x3 = ConvBNLayer(
            num_channels=80, num_filters=192, filter_size=3, act="relu")

F
Felix 已提交
105
    def forward(self, x):
F
Felix 已提交
106 107 108
        x = self.conv_1a_3x3(x)
        x = self.conv_2a_3x3(x)
        x = self.conv_2b_3x3(x)
D
dongshuilong 已提交
109
        x = self.max_pool(x)
F
Felix 已提交
110 111
        x = self.conv_3b_1x1(x)
        x = self.conv_4a_3x3(x)
D
dongshuilong 已提交
112
        x = self.max_pool(x)
F
Felix 已提交
113
        return x
F
Felix 已提交
114

D
dongshuilong 已提交
115

F
Felix 已提交
116
class InceptionA(TheseusLayer):
F
Felix 已提交
117
    def __init__(self, num_channels, pool_features):
D
dongshuilong 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch5x5_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=48,
            filter_size=1,
            act="relu")
        self.branch5x5_2 = ConvBNLayer(
            num_channels=48,
            num_filters=64,
            filter_size=5,
            padding=2,
            act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=64,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(
            num_channels=96,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=pool_features,
            filter_size=1,
            act="relu")
F
Felix 已提交
160 161 162 163 164 165 166 167 168 169 170 171

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)
D
dongshuilong 已提交
172 173
        x = paddle.concat(
            [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
F
Felix 已提交
174
        return x
F
Felix 已提交
175

D
dongshuilong 已提交
176

F
Felix 已提交
177
class InceptionB(TheseusLayer):
F
Felix 已提交
178
    def __init__(self, num_channels):
D
dongshuilong 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        super().__init__()
        self.branch3x3 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=384,
            filter_size=3,
            stride=2,
            act="relu")
        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=64,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=64,
            num_filters=96,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3 = ConvBNLayer(
            num_channels=96,
            num_filters=96,
            filter_size=3,
            stride=2,
            act="relu")
F
Felix 已提交
203
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
D
dongshuilong 已提交
204

F
Felix 已提交
205 206 207 208 209 210 211 212 213
    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)

F
Felix 已提交
214
        x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)
F
Felix 已提交
215

F
Felix 已提交
216
        return x
F
Felix 已提交
217

D
dongshuilong 已提交
218

F
Felix 已提交
219
class InceptionC(TheseusLayer):
F
Felix 已提交
220
    def __init__(self, num_channels, channels_7x7):
D
dongshuilong 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

        self.branch7x7_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=channels_7x7,
            filter_size=1,
            stride=1,
            act="relu")
        self.branch7x7_2 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(1, 7),
            stride=1,
            padding=(0, 3),
            act="relu")
        self.branch7x7_3 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=192,
            filter_size=(7, 1),
            stride=1,
            padding=(3, 0),
            act="relu")

        self.branch7x7dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=channels_7x7,
            filter_size=1,
            act="relu")
        self.branch7x7dbl_2 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7dbl_3 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")
        self.branch7x7dbl_4 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=channels_7x7,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7dbl_5 = ConvBNLayer(
            num_channels=channels_7x7,
            num_filters=192,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")

        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

F
Felix 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

D
dongshuilong 已提交
303 304 305
        x = paddle.concat(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)

F
Felix 已提交
306
        return x
D
dongshuilong 已提交
307 308


F
Felix 已提交
309
class InceptionD(TheseusLayer):
F
Felix 已提交
310
    def __init__(self, num_channels):
D
dongshuilong 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        super().__init__()
        self.branch3x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")
        self.branch3x3_2 = ConvBNLayer(
            num_channels=192,
            num_filters=320,
            filter_size=3,
            stride=2,
            act="relu")
        self.branch7x7x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")
        self.branch7x7x3_2 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=(1, 7),
            padding=(0, 3),
            act="relu")
        self.branch7x7x3_3 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=(7, 1),
            padding=(3, 0),
            act="relu")
        self.branch7x7x3_4 = ConvBNLayer(
            num_channels=192,
            num_filters=192,
            filter_size=3,
            stride=2,
            act="relu")
F
Felix 已提交
346 347 348 349 350 351 352 353 354 355 356 357
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = self.branch_pool(x)
D
dongshuilong 已提交
358

F
Felix 已提交
359 360
        x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
        return x
D
dongshuilong 已提交
361 362


F
Felix 已提交
363
class InceptionE(TheseusLayer):
F
Felix 已提交
364
    def __init__(self, num_channels):
D
dongshuilong 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        super().__init__()
        self.branch1x1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=320,
            filter_size=1,
            act="relu")
        self.branch3x3_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=384,
            filter_size=1,
            act="relu")
        self.branch3x3_2a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu")
        self.branch3x3_2b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu")

        self.branch3x3dbl_1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=448,
            filter_size=1,
            act="relu")
        self.branch3x3dbl_2 = ConvBNLayer(
            num_channels=448,
            num_filters=384,
            filter_size=3,
            padding=1,
            act="relu")
        self.branch3x3dbl_3a = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(1, 3),
            padding=(0, 1),
            act="relu")
        self.branch3x3dbl_3b = ConvBNLayer(
            num_channels=384,
            num_filters=384,
            filter_size=(3, 1),
            padding=(1, 0),
            act="relu")
        self.branch_pool = AvgPool2D(
            kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=192,
            filter_size=1,
            act="relu")

F
Felix 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = paddle.concat(branch3x3, axis=1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

D
dongshuilong 已提交
441 442 443
        x = paddle.concat(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
        return x
F
Felix 已提交
444 445 446


class Inception_V3(TheseusLayer):
F
Felix 已提交
447 448 449 450 451 452 453 454 455
    """
    Inception_V3
    Args:
        config: dict. config of Inception_V3.
        class_num: int=1000. The number of classes.
        pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
    Returns:
        model: nn.Layer. Specific Inception_V3 model depends on args.
    """
D
dongshuilong 已提交
456 457 458 459 460 461 462 463 464

    def __init__(self, config, class_num=1000):
        super().__init__()

        self.inception_a_list = config["inception_a"]
        self.inception_c_list = config["inception_c"]
        self.inception_b_list = config["inception_b"]
        self.inception_d_list = config["inception_d"]
        self.inception_e_list = config["inception_e"]
F
Felix 已提交
465

F
Felix 已提交
466 467
        self.inception_stem = InceptionStem()

F
Felix 已提交
468
        self.inception_block_list = nn.LayerList()
F
Felix 已提交
469
        for i in range(len(self.inception_a_list[0])):
D
dongshuilong 已提交
470
            inception_a = InceptionA(self.inception_a_list[0][i],
F
Felix 已提交
471
                                     self.inception_a_list[1][i])
F
Felix 已提交
472 473 474
            self.inception_block_list.append(inception_a)

        for i in range(len(self.inception_b_list)):
F
Felix 已提交
475
            inception_b = InceptionB(self.inception_b_list[i])
F
Felix 已提交
476 477 478
            self.inception_block_list.append(inception_b)

        for i in range(len(self.inception_c_list[0])):
D
dongshuilong 已提交
479
            inception_c = InceptionC(self.inception_c_list[0][i],
F
Felix 已提交
480
                                     self.inception_c_list[1][i])
F
Felix 已提交
481 482 483
            self.inception_block_list.append(inception_c)

        for i in range(len(self.inception_d_list)):
F
Felix 已提交
484
            inception_d = InceptionD(self.inception_d_list[i])
F
Felix 已提交
485 486 487
            self.inception_block_list.append(inception_d)

        for i in range(len(self.inception_e_list)):
F
Felix 已提交
488
            inception_e = InceptionE(self.inception_e_list[i])
F
Felix 已提交
489
            self.inception_block_list.append(inception_e)
D
dongshuilong 已提交
490

F
Felix 已提交
491 492
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
F
Felix 已提交
493
        stdv = 1.0 / math.sqrt(2048 * 1.0)
F
Felix 已提交
494
        self.fc = Linear(
F
Felix 已提交
495 496
            2048,
            class_num,
D
dongshuilong 已提交
497
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
F
Felix 已提交
498
            bias_attr=ParamAttr())
F
Felix 已提交
499 500

    def forward(self, x):
F
Felix 已提交
501
        x = self.inception_stem(x)
F
Felix 已提交
502
        for inception_block in self.inception_block_list:
D
dongshuilong 已提交
503
            x = inception_block(x)
F
Felix 已提交
504
        x = self.avg_pool(x)
F
Felix 已提交
505
        x = paddle.reshape(x, shape=[-1, 2048])
F
Felix 已提交
506 507
        x = self.dropout(x)
        x = self.fc(x)
F
Felix 已提交
508
        return x
F
Felix 已提交
509 510


D
dongshuilong 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def InceptionV3(pretrained=False, use_ssld=False, **kwargs):
F
Felix 已提交
525 526 527
    """
    InceptionV3
    Args:
D
dongshuilong 已提交
528 529 530
        pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
                    if str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
F
Felix 已提交
531 532 533 534
    Returns:
        model: nn.Layer. Specific `InceptionV3` model 
    """
    model = Inception_V3(NET_CONFIG, **kwargs)
D
dongshuilong 已提交
535
    _load_pretrained(pretrained, model, MODEL_URLS["InceptionV3"], use_ssld)
F
Felix 已提交
536
    return model