README_en.md 7.4 KB
Newer Older
L
littletomatodonkey 已提交
1
[简体中文](README_ch.md) | English
W
weishengyu 已提交
2 3 4 5 6

# PaddleClas

## Introduction

L
lilithzhou 已提交
7
PaddleClas is an image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios.
W
weishengyu 已提交
8

L
lilithzhou 已提交
9
**Recent updates**
W
weishengyu 已提交
10

C
cuicheng01 已提交
11
- 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormer](https://arxiv.org/pdf/2204.02557.pdf).
C
cuicheng01 已提交
12

T
Tingquan Gao 已提交
13
- 2021.09.17 Add PP-LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs.
C
cuicheng01 已提交
14
For the introduction of PP-LCNet, please refer to [paper](https://arxiv.org/pdf/2109.15099.pdf) or [PP-LCNet model introduction](docs/en/models/PP-LCNet_en.md). The metrics and pretrained model are available [here](docs/en/ImageNet_models_en.md).
C
cuicheng01 已提交
15

littletomatodonkey's avatar
littletomatodonkey 已提交
16
- 2021.06.29 Add Swin-transformer series model,Highest top1 acc on ImageNet1k dataset reaches 87.2%, training, evaluation and inference are all supported. Pretrained models can be downloaded [here](docs/en/models/models_intro_en.md).
C
cuicheng01 已提交
17
- 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
W
weishengyu 已提交
18 19 20 21
- [more](./docs/en/update_history_en.md)

## Features

L
lilithzhou 已提交
22 23
- A practical image recognition system consist of detection, feature learning and retrieval modules, widely applicable to all types of image recognition tasks.
Four sample solutions are provided, including product recognition, vehicle recognition, logo recognition and animation character recognition.
W
weishengyu 已提交
24

C
cuicheng01 已提交
25
- Rich library of pre-trained models: Provide a total of 164 ImageNet pre-trained models in 35 series, among which 6 selected series of models support fast structural modification.
W
weishengyu 已提交
26

L
lilithzhou 已提交
27
- Comprehensive and easy-to-use feature learning components: 12 metric learning methods are integrated and can be combined and switched at will through configuration files.
W
weishengyu 已提交
28

L
lilithzhou 已提交
29
- SSLD knowledge distillation: The 14 classification pre-training models generally improved their accuracy by more than 3%; among them, the ResNet50_vd model achieved a Top-1 accuracy of 84.0% on the Image-Net-1k dataset and the Res2Net200_vd pre-training model achieved a Top-1 accuracy of 85.1%.
W
weishengyu 已提交
30

L
lilithzhou 已提交
31
- Data augmentation: Provide 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, etc.  with detailed introduction, code replication and evaluation of effectiveness in a unified experimental environment.
W
weishengyu 已提交
32

L
littletomatodonkey 已提交
33

W
weishengyu 已提交
34

L
LaraStuStu 已提交
35

L
lilithzhou 已提交
36
<div align="center">
L
littletomatodonkey 已提交
37
<img src="./docs/images/recognition_en.gif"  width = "400" />
L
lilithzhou 已提交
38
</div>
W
weishengyu 已提交
39

D
dyning 已提交
40

L
lilithzhou 已提交
41
## Welcome to Join the Technical Exchange Group
W
weishengyu 已提交
42

G
gaotingquan 已提交
43
* You can also scan the QR code below to join the PaddleClas QQ group and WeChat group (add and replay "C") to get more efficient answers to your questions and to communicate with developers from all walks of life. We look forward to hearing from you.
W
weishengyu 已提交
44 45

<div align="center">
G
gaotingquan 已提交
46 47
<img src="https://user-images.githubusercontent.com/80816848/164383225-e375eb86-716e-41b4-a9e0-4b8a3976c1aa.jpg" width="200"/>
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width="200"/>
W
weishengyu 已提交
48 49
</div>

L
littletomatodonkey 已提交
50
## Quick Start
L
littletomatodonkey 已提交
51
Quick experience of image recognition:[Link](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
52 53 54

## Tutorials

B
Bin Lu 已提交
55
- [Quick Installation](./docs/en/tutorials/install_en.md)
W
weishengyu 已提交
56
- [Quick Start of Recognition](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
57 58
- [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems)
- [Demo images](#Demo_images)
W
weishengyu 已提交
59
- Algorithms Introduction
C
cuicheng01 已提交
60
    - [Backbone Network and Pre-trained Model Library](./docs/en/ImageNet_models_en.md)
L
littletomatodonkey 已提交
61
    - [Mainbody Detection](./docs/en/application/mainbody_detection_en.md)
W
weishengyu 已提交
62 63 64 65 66 67
    - [Image Classification](./docs/en/tutorials/image_classification_en.md)
    - [Feature Learning](./docs/en/application/feature_learning_en.md)
        - [Product Recognition](./docs/en/application/product_recognition_en.md)
        - [Vehicle Recognition](./docs/en/application/vehicle_recognition_en.md)
        - [Logo Recognition](./docs/en/application/logo_recognition_en.md)
        - [Animation Character Recognition](./docs/en/application/cartoon_character_recognition_en.md)
W
weishengyu 已提交
68
    - [Vector Search](./deploy/vector_search/README.md)
L
lilithzhou 已提交
69
- Models Training/Evaluation
W
weishengyu 已提交
70
    - [Image Classification](./docs/en/tutorials/getting_started_en.md)
W
weishengyu 已提交
71
    - [Feature Learning](./docs/en/tutorials/getting_started_retrieval_en.md)
W
weishengyu 已提交
72
- Inference Model Prediction
W
weishengyu 已提交
73
    - [Python Inference](./docs/en/inference.md)
D
dongshuilong 已提交
74
    - [C++ Classfication Inference](./deploy/cpp/readme_en.md)[C++ PP-ShiTu Inference](deploy/cpp_shitu/readme_en.md)
W
weishengyu 已提交
75 76 77 78
- Model Deploy (only support classification for now, recognition coming soon)
    - [Hub Serving Deployment](./deploy/hubserving/readme_en.md)
    - [Mobile Deployment](./deploy/lite/readme_en.md)
    - [Inference Using whl](./docs/en/whl_en.md)
L
lilithzhou 已提交
79
- Advanced Tutorial
W
weishengyu 已提交
80 81 82
    - [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Model Quantization](./docs/en/extension/paddle_quantization_en.md)
    - [Data Augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
W
weishengyu 已提交
83 84 85
- [License](#License)
- [Contribution](#Contribution)

W
weishengyu 已提交
86
<a name="Introduction_to_Image_Recognition_Systems"></a>
L
lilithzhou 已提交
87
## Introduction to Image Recognition Systems
W
weishengyu 已提交
88

L
lilithzhou 已提交
89
<div align="center">
W
weishengyu 已提交
90
<img src="./docs/images/structure.jpg"  width = "800" />
L
lilithzhou 已提交
91
</div>
W
weishengyu 已提交
92

L
lilithzhou 已提交
93 94 95 96
Image recognition can be divided into three steps:
- (1)Identify region proposal for target objects through a detection model;
- (2)Extract features for each region proposal;
- (3)Search features in the retrieval database and output results;
W
weishengyu 已提交
97

L
lilithzhou 已提交
98
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
W
weishengyu 已提交
99

W
weishengyu 已提交
100
<a name="Demo_images"></a>
L
LaraStuStu 已提交
101
## Demo images [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images)
102 103
- Product recognition
<div align="center">
L
LaraStuStu 已提交
104
<img src="https://user-images.githubusercontent.com/18028216/122769644-51604f80-d2d7-11eb-8290-c53b12a5c1f6.gif"  width = "400" />
105 106 107 108
</div>

- Cartoon character recognition
<div align="center">
L
LaraStuStu 已提交
109
<img src="https://user-images.githubusercontent.com/18028216/122769746-6b019700-d2d7-11eb-86df-f1d710999ba6.gif"  width = "400" />
110 111 112 113
</div>

- Logo recognition
<div align="center">
L
LaraStuStu 已提交
114
<img src="https://user-images.githubusercontent.com/18028216/122769837-7fde2a80-d2d7-11eb-9b69-04140e9d785f.gif"  width = "400" />
115
</div>
W
weishengyu 已提交
116

117 118
- Car recognition
<div align="center">
L
LaraStuStu 已提交
119
<img src="https://user-images.githubusercontent.com/18028216/122769916-8ec4dd00-d2d7-11eb-8c60-42d89e25030c.gif"  width = "400" />
120 121 122
</div>

<a name="License"></a>
L
lilithzhou 已提交
123 124
## License
PaddleClas is released under the Apache 2.0 license <a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>
W
weishengyu 已提交
125 126 127 128 129 130


<a name="Contribution"></a>
## Contribution
Contributions are highly welcomed and we would really appreciate your feedback!!

L
lilithzhou 已提交
131

W
weishengyu 已提交
132 133 134
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
L
lilithzhou 已提交
135
- Thank [FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563) to parse and summarize the PaddleClas code.