operators.py 19.8 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

G
gaotingquan 已提交
20
from functools import partial
F
Felix 已提交
21 22 23 24 25
import six
import math
import random
import cv2
import numpy as np
H
HydrogenSulfate 已提交
26
from PIL import Image, ImageOps, __version__ as PILLOW_VERSION
G
gaotingquan 已提交
27
from paddle.vision.transforms import ColorJitter as RawColorJitter
H
HydrogenSulfate 已提交
28
from paddle.vision.transforms import ToTensor, Normalize
F
Felix 已提交
29 30 31

from .autoaugment import ImageNetPolicy
from .functional import augmentations
G
gaotingquan 已提交
32 33 34 35
from ppcls.utils import logger


class UnifiedResize(object):
H
HydrogenSulfate 已提交
36
    def __init__(self, interpolation=None, backend="cv2", return_numpy=True):
G
gaotingquan 已提交
37 38 39 40 41
        _cv2_interp_from_str = {
            'nearest': cv2.INTER_NEAREST,
            'bilinear': cv2.INTER_LINEAR,
            'area': cv2.INTER_AREA,
            'bicubic': cv2.INTER_CUBIC,
42 43
            'lanczos': cv2.INTER_LANCZOS4,
            'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
G
gaotingquan 已提交
44 45 46 47 48 49 50
        }
        _pil_interp_from_str = {
            'nearest': Image.NEAREST,
            'bilinear': Image.BILINEAR,
            'bicubic': Image.BICUBIC,
            'box': Image.BOX,
            'lanczos': Image.LANCZOS,
51 52
            'hamming': Image.HAMMING,
            'random': (Image.BILINEAR, Image.BICUBIC)
G
gaotingquan 已提交
53 54
        }

55 56 57 58 59
        def _cv2_resize(src, size, resample):
            if isinstance(resample, tuple):
                resample = random.choice(resample)
            return cv2.resize(src, size, interpolation=resample)

H
HydrogenSulfate 已提交
60
        def _pil_resize(src, size, resample, return_numpy=True):
61 62
            if isinstance(resample, tuple):
                resample = random.choice(resample)
H
HydrogenSulfate 已提交
63 64
            if isinstance(src, np.ndarray):
                pil_img = Image.fromarray(src)
H
HydrogenSulfate 已提交
65 66
            else:
                pil_img = src
G
gaotingquan 已提交
67
            pil_img = pil_img.resize(size, resample)
H
HydrogenSulfate 已提交
68 69 70
            if return_numpy:
                return np.asarray(pil_img)
            return pil_img
G
gaotingquan 已提交
71 72 73 74

        if backend.lower() == "cv2":
            if isinstance(interpolation, str):
                interpolation = _cv2_interp_from_str[interpolation.lower()]
75
            # compatible with opencv < version 4.4.0
G
gaotingquan 已提交
76
            elif interpolation is None:
77
                interpolation = cv2.INTER_LINEAR
78
            self.resize_func = partial(_cv2_resize, resample=interpolation)
G
gaotingquan 已提交
79 80 81
        elif backend.lower() == "pil":
            if isinstance(interpolation, str):
                interpolation = _pil_interp_from_str[interpolation.lower()]
H
HydrogenSulfate 已提交
82 83
            self.resize_func = partial(
                _pil_resize, resample=interpolation, return_numpy=return_numpy)
G
gaotingquan 已提交
84 85 86 87 88 89 90
        else:
            logger.warning(
                f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
            )
            self.resize_func = cv2.resize

    def __call__(self, src, size):
H
HydrogenSulfate 已提交
91 92
        if isinstance(size, list):
            size = tuple(size)
G
gaotingquan 已提交
93
        return self.resize_func(src, size)
F
Felix 已提交
94

D
dongshuilong 已提交
95

F
Felix 已提交
96 97 98 99 100
class OperatorParamError(ValueError):
    """ OperatorParamError
    """
    pass

D
dongshuilong 已提交
101

F
Felix 已提交
102 103 104 105 106 107 108 109 110
class DecodeImage(object):
    """ decode image """

    def __init__(self, to_rgb=True, to_np=False, channel_first=False):
        self.to_rgb = to_rgb
        self.to_np = to_np  # to numpy
        self.channel_first = channel_first  # only enabled when to_np is True

    def __call__(self, img):
H
HydrogenSulfate 已提交
111 112 113 114 115 116 117 118 119
        if not isinstance(img, np.ndarray):
            if six.PY2:
                assert type(img) is str and len(
                    img) > 0, "invalid input 'img' in DecodeImage"
            else:
                assert type(img) is bytes and len(
                    img) > 0, "invalid input 'img' in DecodeImage"
            data = np.frombuffer(img, dtype='uint8')
            img = cv2.imdecode(data, 1)
F
Felix 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        if self.to_rgb:
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
                img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        return img


class ResizeImage(object):
    """ resize image """

G
gaotingquan 已提交
134 135 136 137
    def __init__(self,
                 size=None,
                 resize_short=None,
                 interpolation=None,
H
HydrogenSulfate 已提交
138 139
                 backend="cv2",
                 return_numpy=True):
F
Felix 已提交
140 141 142 143 144 145 146 147 148 149 150 151
        if resize_short is not None and resize_short > 0:
            self.resize_short = resize_short
            self.w = None
            self.h = None
        elif size is not None:
            self.resize_short = None
            self.w = size if type(size) is int else size[0]
            self.h = size if type(size) is int else size[1]
        else:
            raise OperatorParamError("invalid params for ReisizeImage for '\
                'both 'size' and 'resize_short' are None")

G
gaotingquan 已提交
152
        self._resize_func = UnifiedResize(
H
HydrogenSulfate 已提交
153 154 155
            interpolation=interpolation,
            backend=backend,
            return_numpy=return_numpy)
G
gaotingquan 已提交
156

F
Felix 已提交
157
    def __call__(self, img):
H
HydrogenSulfate 已提交
158 159 160 161 162
        if isinstance(img, np.ndarray):
            img_h, img_w = img.shape[:2]
        else:
            img_w, img_h = img.size

F
Felix 已提交
163 164 165 166 167 168 169
        if self.resize_short is not None:
            percent = float(self.resize_short) / min(img_w, img_h)
            w = int(round(img_w * percent))
            h = int(round(img_h * percent))
        else:
            w = self.w
            h = self.h
G
gaotingquan 已提交
170
        return self._resize_func(img, (w, h))
F
Felix 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192


class CropImage(object):
    """ crop image """

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)
        else:
            self.size = size  # (h, w)

    def __call__(self, img):
        w, h = self.size
        img_h, img_w = img.shape[:2]
        w_start = (img_w - w) // 2
        h_start = (img_h - h) // 2

        w_end = w_start + w
        h_end = h_start + h
        return img[h_start:h_end, w_start:w_end, :]


Z
zhiboniu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class Pad(object):
    def __init__(self,
                 size=None,
                 size_divisor=32,
                 pad_mode=0,
                 offsets=None,
                 fill_value=(127.5, 127.5, 127.5)):
        """
        Pad image to a specified size or multiple of size_divisor.
        Args:
            size (int, list): image target size, if None, pad to multiple of size_divisor, default None
            size_divisor (int): size divisor, default 32
            pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
                if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
            offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
            fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
        """

        if not isinstance(size, (int, list)):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. \
                            Must be List, now is {}".format(type(size)))

        if isinstance(size, int):
            size = [size, size]

        assert pad_mode in [
            -1, 0, 1, 2
        ], 'currently only supports four modes [-1, 0, 1, 2]'
        if pad_mode == -1:
            assert offsets, 'if pad_mode is -1, offsets should not be None'

        self.size = size
        self.size_divisor = size_divisor
        self.pad_mode = pad_mode
        self.fill_value = fill_value
        self.offsets = offsets

    def apply_image(self, image, offsets, im_size, size):
        x, y = offsets
        im_h, im_w = im_size
        h, w = size
        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
        return canvas

    def __call__(self, img):
        im_h, im_w = img.shape[:2]
        if self.size:
            w, h = self.size
            assert (
                im_h <= h and im_w <= w
            ), '(h, w) of target size should be greater than (im_h, im_w)'
        else:
            h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
            w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)

        if h == im_h and w == im_w:
            return img.astype(np.float32)

        if self.pad_mode == -1:
            offset_x, offset_y = self.offsets
        elif self.pad_mode == 0:
            offset_y, offset_x = 0, 0
        elif self.pad_mode == 1:
            offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
        else:
            offset_y, offset_x = h - im_h, w - im_w

        offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]

        return self.apply_image(img, offsets, im_size, size)


class RandomCropImage(object):
    """Random crop image only
    """

    def __init__(self, size):
        super(RandomCropImage, self).__init__()
        if isinstance(size, int):
            size = [size, size]
        self.size = size

    def __call__(self, img):

        h, w = img.shape[:2]
        tw, th = self.size
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)

        img = img[i:i + th, j:j + tw, :]
        if img.shape[0] != 256 or img.shape[1] != 192:
            raise ValueError('sample: ', h, w, i, j, th, tw, img.shape)

        return img


F
Felix 已提交
292 293 294
class RandCropImage(object):
    """ random crop image """

G
gaotingquan 已提交
295 296 297 298 299 300
    def __init__(self,
                 size,
                 scale=None,
                 ratio=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
301 302 303 304 305 306 307 308
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

        self.scale = [0.08, 1.0] if scale is None else scale
        self.ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

G
gaotingquan 已提交
309 310 311
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    def __call__(self, img):
        size = self.size
        scale = self.scale
        ratio = self.ratio

        aspect_ratio = math.sqrt(random.uniform(*ratio))
        w = 1. * aspect_ratio
        h = 1. / aspect_ratio

        img_h, img_w = img.shape[:2]

        bound = min((float(img_w) / img_h) / (w**2),
                    (float(img_h) / img_w) / (h**2))
        scale_max = min(scale[1], bound)
        scale_min = min(scale[0], bound)

        target_area = img_w * img_h * random.uniform(scale_min, scale_max)
        target_size = math.sqrt(target_area)
        w = int(target_size * w)
        h = int(target_size * h)

        i = random.randint(0, img_w - w)
        j = random.randint(0, img_h - h)

        img = img[j:j + h, i:i + w, :]
G
gaotingquan 已提交
337 338

        return self._resize_func(img, size)
F
Felix 已提交
339 340


H
HydrogenSulfate 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
class RandCropImageV2(object):
    """ RandCropImageV2 is different from RandCropImage,
    it will Select a cutting position randomly in a uniform distribution way,
    and cut according to the given size without resize at last."""

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

    def __call__(self, img):
        if isinstance(img, np.ndarray):
            img_h, img_w = img.shap[0], img.shap[1]
        else:
            img_w, img_h = img.size
        tw, th = self.size

        if img_h + 1 < th or img_w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".
                format((th, tw), (img_h, img_w)))

        if img_w == tw and img_h == th:
            return img

        top = random.randint(0, img_h - th + 1)
        left = random.randint(0, img_w - tw + 1)
        if isinstance(img, np.ndarray):
            return img[top:top + th, left:left + tw, :]
        else:
            return img.crop((left, top, left + tw, top + th))


F
Felix 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
class RandFlipImage(object):
    """ random flip image
        flip_code:
            1: Flipped Horizontally
            0: Flipped Vertically
            -1: Flipped Horizontally & Vertically
    """

    def __init__(self, flip_code=1):
        assert flip_code in [-1, 0, 1
                             ], "flip_code should be a value in [-1, 0, 1]"
        self.flip_code = flip_code

    def __call__(self, img):
        if random.randint(0, 1) == 1:
H
HydrogenSulfate 已提交
390 391 392 393
            if isinstance(img, np.ndarray):
                return cv2.flip(img, self.flip_code)
            else:
                return img.transpose(Image.FLIP_LEFT_RIGHT)
F
Felix 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        else:
            return img


class AutoAugment(object):
    def __init__(self):
        self.policy = ImageNetPolicy()

    def __call__(self, img):
        from PIL import Image
        img = np.ascontiguousarray(img)
        img = Image.fromarray(img)
        img = self.policy(img)
        img = np.asarray(img)


class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
414 415 416 417 418 419 420
    def __init__(self,
                 scale=None,
                 mean=None,
                 std=None,
                 order='chw',
                 output_fp16=False,
                 channel_num=3):
F
Felix 已提交
421 422
        if isinstance(scale, str):
            scale = eval(scale)
littletomatodonkey's avatar
littletomatodonkey 已提交
423 424 425 426 427
        assert channel_num in [
            3, 4
        ], "channel number of input image should be set to 3 or 4."
        self.channel_num = channel_num
        self.output_dtype = 'float16' if output_fp16 else 'float32'
F
Felix 已提交
428
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
littletomatodonkey's avatar
littletomatodonkey 已提交
429
        self.order = order
F
Felix 已提交
430 431 432
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

littletomatodonkey's avatar
littletomatodonkey 已提交
433
        shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
F
Felix 已提交
434 435 436 437 438 439 440 441 442 443
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
littletomatodonkey's avatar
littletomatodonkey 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457

        img = (img.astype('float32') * self.scale - self.mean) / self.std

        if self.channel_num == 4:
            img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
            img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
            pad_zeros = np.zeros(
                (1, img_h, img_w)) if self.order == 'chw' else np.zeros(
                    (img_h, img_w, 1))
            img = (np.concatenate(
                (img, pad_zeros), axis=0)
                   if self.order == 'chw' else np.concatenate(
                       (img, pad_zeros), axis=2))
        return img.astype(self.output_dtype)
F
Felix 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self):
        pass

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        return img.transpose((2, 0, 1))


class AugMix(object):
    """ Perform AugMix augmentation and compute mixture.
    """

D
dongshuilong 已提交
479 480 481 482 483 484
    def __init__(self,
                 prob=0.5,
                 aug_prob_coeff=0.1,
                 mixture_width=3,
                 mixture_depth=1,
                 aug_severity=1):
F
Felix 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        """
        Args:
            prob: Probability of taking augmix
            aug_prob_coeff: Probability distribution coefficients.
            mixture_width: Number of augmentation chains to mix per augmented example.
            mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
            aug_severity: Severity of underlying augmentation operators (between 1 to 10).
        """
        # fmt: off
        self.prob = prob
        self.aug_prob_coeff = aug_prob_coeff
        self.mixture_width = mixture_width
        self.mixture_depth = mixture_depth
        self.aug_severity = aug_severity
        self.augmentations = augmentations
        # fmt: on

    def __call__(self, image):
        """Perform AugMix augmentations and compute mixture.
        Returns:
          mixed: Augmented and mixed image.
        """
        if random.random() > self.prob:
            # Avoid the warning: the given NumPy array is not writeable
            return np.asarray(image).copy()

        ws = np.float32(
            np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
D
dongshuilong 已提交
513 514
        m = np.float32(
            np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
F
Felix 已提交
515 516

        # image = Image.fromarray(image)
D
dongshuilong 已提交
517
        mix = np.zeros(image.shape)
F
Felix 已提交
518 519 520
        for i in range(self.mixture_width):
            image_aug = image.copy()
            image_aug = Image.fromarray(image_aug)
D
dongshuilong 已提交
521 522
            depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(
                1, 4)
F
Felix 已提交
523 524 525 526 527 528 529
            for _ in range(depth):
                op = np.random.choice(self.augmentations)
                image_aug = op(image_aug, self.aug_severity)
            mix += ws[i] * np.asarray(image_aug)

        mixed = (1 - m) * image + m * mix
        return mixed.astype(np.uint8)
G
gaotingquan 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546


class ColorJitter(RawColorJitter):
    """ColorJitter.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def __call__(self, img):
        if not isinstance(img, Image.Image):
            img = np.ascontiguousarray(img)
            img = Image.fromarray(img)
        img = super()._apply_image(img)
        if isinstance(img, Image.Image):
            img = np.asarray(img)
        return img
H
HydrogenSulfate 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564


class Pad(object):
    """
    Pads the given PIL.Image on all sides with specified padding mode and fill value.
    adapted from: https://pytorch.org/vision/stable/_modules/torchvision/transforms/transforms.html#Pad
    """

    def __init__(self, padding: int, fill: int=0,
                 padding_mode: str="constant"):
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

    def _parse_fill(self, fill, img, min_pil_version, name="fillcolor"):
        # Process fill color for affine transforms
        major_found, minor_found = (int(v)
                                    for v in PILLOW_VERSION.split('.')[:2])
Z
zhiboniu 已提交
565 566
        major_required, minor_required = (int(v) for v in
                                          min_pil_version.split('.')[:2])
H
HydrogenSulfate 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        if major_found < major_required or (major_found == major_required and
                                            minor_found < minor_required):
            if fill is None:
                return {}
            else:
                msg = (
                    "The option to fill background area of the transformed image, "
                    "requires pillow>={}")
                raise RuntimeError(msg.format(min_pil_version))

        num_bands = len(img.getbands())
        if fill is None:
            fill = 0
        if isinstance(fill, (int, float)) and num_bands > 1:
            fill = tuple([fill] * num_bands)
        if isinstance(fill, (list, tuple)):
            if len(fill) != num_bands:
                msg = (
                    "The number of elements in 'fill' does not match the number of "
                    "bands of the image ({} != {})")
                raise ValueError(msg.format(len(fill), num_bands))

            fill = tuple(fill)

        return {name: fill}

    def __call__(self, img):
        opts = self._parse_fill(self.fill, img, "2.3.0", name="fill")
        if img.mode == "P":
            palette = img.getpalette()
            img = ImageOps.expand(img, border=self.padding, **opts)
            img.putpalette(palette)
            return img

        return ImageOps.expand(img, border=self.padding, **opts)