ResNet34.yaml 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: "./output/"
  device: "gpu"
  class_num: 1000
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 120
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: "./inference"

# model architecture
Arch:
  name: "ResNet34"
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
C
cuicheng01 已提交
33
  name: "Momentum"
34 35
  momentum: 0.9
  lr:
C
cuicheng01 已提交
36
    name: "Piecewise"
37 38 39 40 41 42 43 44 45 46 47 48
    learning_rate: 0.1
    decay_epochs: [30, 60, 90]
    values: [0.1, 0.01, 0.001, 0.0001]
  regularizer:
    name: 'L2'
    coeff: 0.0001


# data loader for train and eval
DataLoader:
  Train:
    dataset:
C
cuicheng01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
      name: "ImageNetDataset"
      image_root: "./dataset/ILSVRC2012/"
      cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
      transform_ops:
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
62 63

    sampler:
C
cuicheng01 已提交
64 65 66 67
      name: "DistributedBatchSampler"
      batch_size: 64
      drop_last: False
      shuffle: True
68
    loader:
C
cuicheng01 已提交
69
      num_workers: 4
C
cuicheng01 已提交
70
      use_shared_memory: True
71 72 73 74

  Eval:
    # TOTO: modify to the latest trainer
    dataset: 
C
cuicheng01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
      name: "ImageNetDataset"
      image_root: "./dataset/ILSVRC2012/"
      cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
      transform_ops:
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
88
    sampler:
C
cuicheng01 已提交
89 90 91 92
      name: "DistributedBatchSampler"
      batch_size: 64
      drop_last: False
      shuffle: False
93
    loader:
C
cuicheng01 已提交
94
      num_workers: 4
C
cuicheng01 已提交
95
      use_shared_memory: True
96 97 98 99 100

Infer:
  infer_imgs: "docs/images/whl/demo.jpg"
  batch_size: 10
  transforms:
C
cuicheng01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
114
  PostProcess:
C
cuicheng01 已提交
115
    name: "Topk"
116 117 118 119
    topk: 5
    class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"

Metric:
C
cuicheng01 已提交
120
  Train:
C
cuicheng01 已提交
121 122
    - TopkAcc:
        topk: [1, 5]
C
cuicheng01 已提交
123
  Eval:
C
cuicheng01 已提交
124 125
    - TopkAcc:
        topk: [1, 5]