xception_deeplab.py 12.7 KB
Newer Older
W
WuHaobo 已提交
1
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4 5
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, Dropout
W
WuHaobo 已提交
6

7
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
W
WuHaobo 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33


def check_data(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def check_stride(s, os):
    if s <= os:
        return True
    else:
        return False


def check_points(count, points):
    if points is None:
        return False
    else:
        if isinstance(points, list):
            return (True if count in points else False)
        else:
            return (True if count == points else False)


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def gen_bottleneck_params(backbone='xception_65'):
    if backbone == 'xception_65':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_41':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (8, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_71':
        bottleneck_params = {
            "entry_flow": (5, [2, 1, 2, 1, 2], [128, 256, 256, 728, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    else:
        raise Exception(
            "xception backbont only support xception_41/xception_65/xception_71"
        )
    return bottleneck_params


littletomatodonkey's avatar
littletomatodonkey 已提交
60
class ConvBNLayer(nn.Layer):
61 62 63 64 65 66 67 68 69 70
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
71 72 73 74
        self._conv = Conv2d(
            in_channels=input_channels,
            out_channels=output_channels,
            kernel_size=filter_size,
75 76
            stride=stride,
            padding=padding,
littletomatodonkey's avatar
littletomatodonkey 已提交
77
            weight_attr=ParamAttr(name=name + "/weights"),
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
            bias_attr=False)
        self._bn = BatchNorm(
            num_channels=output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/BatchNorm/beta"),
            moving_mean_name=name + "/BatchNorm/moving_mean",
            moving_variance_name=name + "/BatchNorm/moving_variance")

    def forward(self, inputs):
        return self._bn(self._conv(inputs))


littletomatodonkey's avatar
littletomatodonkey 已提交
93
class Seperate_Conv(nn.Layer):
94 95 96 97 98 99 100 101 102 103
    def __init__(self,
                 input_channels,
                 output_channels,
                 stride,
                 filter,
                 dilation=1,
                 act=None,
                 name=None):
        super(Seperate_Conv, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
104 105 106 107
        self._conv1 = Conv2d(
            in_channels=input_channels,
            out_channels=input_channels,
            kernel_size=filter,
108 109 110 111
            stride=stride,
            groups=input_channels,
            padding=(filter) // 2 * dilation,
            dilation=dilation,
littletomatodonkey's avatar
littletomatodonkey 已提交
112
            weight_attr=ParamAttr(name=name + "/depthwise/weights"),
113 114 115 116 117 118 119 120 121 122
            bias_attr=False)
        self._bn1 = BatchNorm(
            input_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"),
            moving_mean_name=name + "/depthwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/depthwise/BatchNorm/moving_variance")
littletomatodonkey's avatar
littletomatodonkey 已提交
123
        self._conv2 = Conv2d(
124 125 126 127 128 129
            input_channels,
            output_channels,
            1,
            stride=1,
            groups=1,
            padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
130
            weight_attr=ParamAttr(name=name + "/pointwise/weights"),
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            bias_attr=False)
        self._bn2 = BatchNorm(
            output_channels,
            act=act,
            epsilon=1e-3,
            momentum=0.99,
            param_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
            bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"),
            moving_mean_name=name + "/pointwise/BatchNorm/moving_mean",
            moving_variance_name=name + "/pointwise/BatchNorm/moving_variance")

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._bn1(x)
        x = self._conv2(x)
        x = self._bn2(x)
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
150
class Xception_Block(nn.Layer):
151 152 153 154 155 156 157 158 159 160 161
    def __init__(self,
                 input_channels,
                 output_channels,
                 strides=1,
                 filter_size=3,
                 dilation=1,
                 skip_conv=True,
                 has_skip=True,
                 activation_fn_in_separable_conv=False,
                 name=None):
        super(Xception_Block, self).__init__()
W
WuHaobo 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        repeat_number = 3
        output_channels = check_data(output_channels, repeat_number)
        filter_size = check_data(filter_size, repeat_number)
        strides = check_data(strides, repeat_number)

        self.has_skip = has_skip
        self.skip_conv = skip_conv
        self.activation_fn_in_separable_conv = activation_fn_in_separable_conv
        if not activation_fn_in_separable_conv:
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                dilation=dilation,
                name=name + "/separable_conv3")
W
WuHaobo 已提交
193
        else:
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv3")

        if has_skip and skip_conv:
            self._short = ConvBNLayer(
                input_channels,
                output_channels[-1],
                1,
                stride=strides[-1],
                padding=0,
                name=name + "/shortcut")

    def forward(self, inputs):
        if not self.activation_fn_in_separable_conv:
littletomatodonkey's avatar
littletomatodonkey 已提交
230
            x = F.relu(inputs)
231
            x = self._conv1(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
232
            x = F.relu(x)
233
            x = self._conv2(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
234
            x = F.relu(x)
235 236 237 238 239 240 241 242 243 244 245
            x = self._conv3(x)
        else:
            x = self._conv1(inputs)
            x = self._conv2(x)
            x = self._conv3(x)
        if self.has_skip is False:
            return x
        if self.skip_conv:
            skip = self._short(inputs)
        else:
            skip = inputs
littletomatodonkey's avatar
littletomatodonkey 已提交
246
        return paddle.elementwise_add(x, skip)
247 248


littletomatodonkey's avatar
littletomatodonkey 已提交
249
class XceptionDeeplab(nn.Layer):
250
    def __init__(self, backbone, class_dim=1000):
W
wqz960 已提交
251
        super(XceptionDeeplab, self).__init__()
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

        bottleneck_params = gen_bottleneck_params(backbone)
        self.backbone = backbone

        self._conv1 = ConvBNLayer(
            3,
            32,
            3,
            stride=2,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv1")
        self._conv2 = ConvBNLayer(
            32,
            64,
            3,
            stride=1,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv2")

        self.block_num = bottleneck_params["entry_flow"][0]
        self.strides = bottleneck_params["entry_flow"][1]
        self.chns = bottleneck_params["entry_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)

        self.entry_flow = []
        self.middle_flow = []

W
WuHaobo 已提交
282
        self.stride = 2
283
        self.output_stride = 32
W
WuHaobo 已提交
284 285
        s = self.stride

286 287 288 289 290 291 292 293 294 295 296 297
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/entry_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=64 if i == 0 else self.chns[i - 1],
                    output_channels=self.chns[i],
                    strides=[1, 1, self.stride],
                    name=self.backbone + "/entry_flow/block" + str(i + 1)))
            self.entry_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
298 299
        self.stride = s

300 301 302 303 304
        self.block_num = bottleneck_params["middle_flow"][0]
        self.strides = bottleneck_params["middle_flow"][1]
        self.chns = bottleneck_params["middle_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
305 306
        s = self.stride

307 308 309 310 311 312 313 314 315 316 317 318 319
        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/middle_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=728,
                    output_channels=728,
                    strides=[1, 1, self.strides[i]],
                    skip_conv=False,
                    name=self.backbone + "/middle_flow/block" + str(i + 1)))
            self.middle_flow.append(xception_block)
            s = s * stride
W
WuHaobo 已提交
320
        self.stride = s
321 322 323 324 325 326

        self.block_num = bottleneck_params["exit_flow"][0]
        self.strides = bottleneck_params["exit_flow"][1]
        self.chns = bottleneck_params["exit_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
W
WuHaobo 已提交
327
        s = self.stride
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        stride = self.strides[0] if check_stride(s * self.strides[0],
                                                 self.output_stride) else 1
        self._exit_flow_1 = Xception_Block(
            728,
            self.chns[0], [1, 1, stride],
            name=self.backbone + "/exit_flow/block1")
        s = s * stride
        stride = self.strides[1] if check_stride(s * self.strides[1],
                                                 self.output_stride) else 1
        self._exit_flow_2 = Xception_Block(
            self.chns[0][-1],
            self.chns[1], [1, 1, stride],
            dilation=2,
            has_skip=False,
            activation_fn_in_separable_conv=True,
            name=self.backbone + "/exit_flow/block2")
        s = s * stride
W
WuHaobo 已提交
345 346

        self.stride = s
347 348 349 350 351 352

        self._drop = Dropout(p=0.5)
        self._pool = Pool2D(pool_type="avg", global_pooling=True)
        self._fc = Linear(
            self.chns[1][-1],
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
353
            weight_attr=ParamAttr(name="fc_weights"),
354 355 356 357 358 359 360 361 362 363 364 365 366
            bias_attr=ParamAttr(name="fc_bias"))

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)
        for ef in self.entry_flow:
            x = ef(x)
        for mf in self.middle_flow:
            x = mf(x)
        x = self._exit_flow_1(x)
        x = self._exit_flow_2(x)
        x = self._drop(x)
        x = self._pool(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
367
        x = paddle.squeeze(x, axis=[2, 3])
368 369
        x = self._fc(x)
        return x
W
WuHaobo 已提交
370 371


W
wqz960 已提交
372 373
def Xception41_deeplab(**args):
    model = XceptionDeeplab('xception_41', **args)
W
WuHaobo 已提交
374 375 376
    return model


W
wqz960 已提交
377 378
def Xception65_deeplab(**args):
    model = XceptionDeeplab("xception_65", **args)
W
WuHaobo 已提交
379 380 381
    return model


W
wqz960 已提交
382 383
def Xception71_deeplab(**args):
    model = XceptionDeeplab("xception_71", **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
384
    return model