__init__.py 5.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
littletomatodonkey 已提交
15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import paddle
21
from typing import Dict, List
L
littletomatodonkey 已提交
22 23 24

from ppcls.utils import logger

W
WuHaobo 已提交
25 26
from . import optimizer

L
littletomatodonkey 已提交
27 28 29 30 31 32 33 34
__all__ = ['build_optimizer']


def build_lr_scheduler(lr_config, epochs, step_each_epoch):
    from . import learning_rate
    lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
    if 'name' in lr_config:
        lr_name = lr_config.pop('name')
D
dongshuilong 已提交
35 36 37 38 39
        lr = getattr(learning_rate, lr_name)(**lr_config)
        if isinstance(lr, paddle.optimizer.lr.LRScheduler):
            return lr
        else:
            return lr()
L
littletomatodonkey 已提交
40 41 42 43 44
    else:
        lr = lr_config['learning_rate']
    return lr


G
gaotingquan 已提交
45 46
# model_list is None in static graph
def build_optimizer(config, epochs, step_each_epoch, model_list=None):
H
HydrogenSulfate 已提交
47
    optim_config = copy.deepcopy(config)
48
    if isinstance(optim_config, dict):
H
HydrogenSulfate 已提交
49
        # convert {'name': xxx, **optim_cfg} to [{'name': {'scope': xxx, **optim_cfg}}]
50 51
        optim_name = optim_config.pop("name")
        optim_config: List[Dict[str, Dict]] = [{
52
            optim_name: {
H
HydrogenSulfate 已提交
53
                'scope': "all",
54
                **
55
                optim_config
56 57 58 59
            }
        }]
    optim_list = []
    lr_list = []
H
HydrogenSulfate 已提交
60 61 62
    """NOTE:
    Currently only support optim objets below.
    1. single optimizer config.
H
HydrogenSulfate 已提交
63 64
    2. model(entire Arch), backbone, neck, head.
    3. loss(entire Loss), specific loss listed in ppcls/loss/__init__.py.
H
HydrogenSulfate 已提交
65
    """
66
    for optim_item in optim_config:
H
HydrogenSulfate 已提交
67
        # optim_cfg = {optim_name: {'scope': xxx, **optim_cfg}}
68
        # step1 build lr
H
HydrogenSulfate 已提交
69 70
        optim_name = list(optim_item.keys())[0]  # get optim_name
        optim_scope = optim_item[optim_name].pop('scope')  # get optim_scope
71 72 73
        optim_cfg = optim_item[optim_name]  # get optim_cfg

        lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch)
H
HydrogenSulfate 已提交
74 75
        logger.info("build lr ({}) for scope ({}) success..".format(
            lr.__class__.__name__, optim_scope))
76 77 78 79 80 81 82 83 84 85
        # step2 build regularization
        if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None:
            if 'weight_decay' in optim_cfg:
                logger.warning(
                    "ConfigError: Only one of regularizer and weight_decay can be set in Optimizer Config. \"weight_decay\" has been ignored."
                )
            reg_config = optim_cfg.pop('regularizer')
            reg_name = reg_config.pop('name') + 'Decay'
            reg = getattr(paddle.regularizer, reg_name)(**reg_config)
            optim_cfg["weight_decay"] = reg
H
HydrogenSulfate 已提交
86 87
            logger.info("build regularizer ({}) for scope ({}) success..".
                        format(reg.__class__.__name__, optim_scope))
88 89 90 91 92 93 94
        # step3 build optimizer
        if 'clip_norm' in optim_cfg:
            clip_norm = optim_cfg.pop('clip_norm')
            grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
        else:
            grad_clip = None
        optim_model = []
H
HydrogenSulfate 已提交
95

H
HydrogenSulfate 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        # for static graph
        if model_list is None:
            optim = getattr(optimizer, optim_name)(
                learning_rate=lr, grad_clip=grad_clip,
                **optim_cfg)(model_list=optim_model)
            return optim, lr

        # for dynamic graph
        if optim_scope == "all":
            optim_model = model_list
        elif optim_scope == "model":
            optim_model = [model_list[0], ]
        elif optim_scope in ["backbone", "neck", "head"]:
            optim_model = [getattr(model_list[0], optim_scope, None), ]
        elif optim_scope == "loss":
            optim_model = [model_list[1], ]
        else:
            optim_model = [
                model_list[1].loss_func[i]
                for i in range(len(model_list[1].loss_func))
                if model_list[1].loss_func[i].__class__.__name__ == optim_scope
            ]
        optim_model = [
            optim_model[i] for i in range(len(optim_model))
            if (optim_model[i] is not None
                ) and (len(optim_model[i].parameters()) > 0)
        ]
        assert len(optim_model) > 0, \
            f"optim_model is empty for optim_scope({optim_scope})"

126 127 128
        optim = getattr(optimizer, optim_name)(
            learning_rate=lr, grad_clip=grad_clip,
            **optim_cfg)(model_list=optim_model)
H
HydrogenSulfate 已提交
129 130
        logger.info("build optimizer ({}) for scope ({}) success..".format(
            optim.__class__.__name__, optim_scope))
131 132 133
        optim_list.append(optim)
        lr_list.append(lr)
    return optim_list, lr_list