distillationloss.py 9.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
wc晨曦's avatar
wc晨曦 已提交
17
import paddle.nn.functional as F
littletomatodonkey's avatar
littletomatodonkey 已提交
18 19 20 21

from .celoss import CELoss
from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss
22
from .rkdloss import RKdAngle, RkdDistance
wc晨曦's avatar
wc晨曦 已提交
23
from .kldivloss import KLDivLoss
wc晨曦's avatar
wc晨曦 已提交
24
from .dkdloss import DKDLoss
25
from .multilabelloss import MultiLabelLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


class DistillationCELoss(CELoss):
    """
    DistillationCELoss
    """

    def __init__(self,
                 model_name_pairs=[],
                 epsilon=None,
                 key=None,
                 name="loss_ce"):
        super().__init__(epsilon=epsilon)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
        return loss_dict


class DistillationGTCELoss(CELoss):
    """
    DistillationGTCELoss
    """

    def __init__(self,
                 model_names=[],
                 epsilon=None,
                 key=None,
                 name="loss_gt_ce"):
        super().__init__(epsilon=epsilon)
        assert isinstance(model_names, list)
        self.key = key
        self.model_names = model_names
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
littletomatodonkey's avatar
littletomatodonkey 已提交
76
        for name in self.model_names:
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
            out = predicts[name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            for key in loss:
                loss_dict["{}_{}".format(key, name)] = loss[key]
        return loss_dict


class DistillationDMLLoss(DMLLoss):
    """
    """

    def __init__(self,
                 model_name_pairs=[],
92
                 act="softmax",
93 94
                 weight_ratio=False,
                 sum_across_class_dim=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
95 96
                 key=None,
                 name="loss_dml"):
97
        super().__init__(act=act, sum_across_class_dim=sum_across_class_dim)
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99 100 101
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name
102
        self.weight_ratio = weight_ratio
littletomatodonkey's avatar
littletomatodonkey 已提交
103 104 105 106 107 108 109 110 111

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
112 113 114 115
            if self.weight_ratio is True:
                loss = super().forward(out1, out2, batch)
            else:
                loss = super().forward(out1, out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                   idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, idx)] = loss
        return loss_dict


class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
132
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134 135 136 137 138 139
                 key=None,
                 name="loss_",
                 **kargs):
        super().__init__(mode=mode, **kargs)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
140
        self.name = name + mode
141 142 143 144 145 146 147
        assert act in [None, "sigmoid", "softmax"]
        if act == "sigmoid":
            self.act = nn.Sigmoid()
        elif act == "softmax":
            self.act = nn.Softmax(axis=-1)
        else:
            self.act = None
littletomatodonkey's avatar
littletomatodonkey 已提交
148 149 150 151 152 153 154 155 156

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
157 158 159
            if self.act is not None:
                out1 = self.act(out1)
                out2 = self.act(out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162 163
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
        return loss_dict
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


class DistillationRKDLoss(nn.Layer):
    def __init__(self,
                 target_size=None,
                 model_name_pairs=(["Student", "Teacher"], ),
                 student_keepkeys=[],
                 teacher_keepkeys=[]):
        super().__init__()
        self.student_keepkeys = student_keepkeys
        self.teacher_keepkeys = teacher_keepkeys
        self.model_name_pairs = model_name_pairs
        assert len(self.student_keepkeys) == len(self.teacher_keepkeys)

        self.rkd_angle_loss = RKdAngle(target_size=target_size)
        self.rkd_dist_loss = RkdDistance(target_size=target_size)

    def __call__(self, predicts, batch):
        loss_dict = {}
        for m1, m2 in self.model_name_pairs:
            for idx, (
                    student_name, teacher_name
            ) in enumerate(zip(self.student_keepkeys, self.teacher_keepkeys)):
                student_out = predicts[m1][student_name]
                teacher_out = predicts[m2][teacher_name]

                loss_dict[f"loss_angle_{idx}_{m1}_{m2}"] = self.rkd_angle_loss(
                    student_out, teacher_out)
                loss_dict[f"loss_dist_{idx}_{m1}_{m2}"] = self.rkd_dist_loss(
                    student_out, teacher_out)

        return loss_dict
wc晨曦's avatar
wc晨曦 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225


class DistillationKLDivLoss(KLDivLoss):
    """
    DistillationKLDivLoss
    """

    def __init__(self,
                 model_name_pairs=[],
                 temperature=4,
                 key=None,
                 name="loss_kl"):
        super().__init__(temperature=temperature)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
        return loss_dict
wc晨曦's avatar
wc晨曦 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238


class DistillationDKDLoss(DKDLoss):
    """
    DistillationDKDLoss
    """

    def __init__(self,
                 model_name_pairs=[],
                 key=None,
                 temperature=1.0,
                 alpha=1.0,
                 beta=1.0,
239
                 use_target_as_gt=False,
wc晨曦's avatar
wc晨曦 已提交
240
                 name="loss_dkd"):
241 242 243 244 245
        super().__init__(
            temperature=temperature,
            alpha=alpha,
            beta=beta,
            use_target_as_gt=use_target_as_gt)
wc晨曦's avatar
wc晨曦 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2, batch)
            loss_dict[f"{self.name}_{pair[0]}_{pair[1]}"] = loss
        return loss_dict
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291


class DistillationMultiLabelLoss(MultiLabelLoss):
    """
    DistillationMultiLabelLoss
    """

    def __init__(self,
                 model_names=[],
                 epsilon=None,
                 size_sum=False,
                 weight_ratio=False,
                 key=None,
                 name="loss_mll"):
        super().__init__(
            epsilon=epsilon, size_sum=size_sum, weight_ratio=weight_ratio)
        assert isinstance(model_names, list)
        self.key = key
        self.model_names = model_names
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for name in self.model_names:
            out = predicts[name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            for key in loss:
                loss_dict["{}_{}".format(key, name)] = loss[key]
        return loss_dict