Res2Net200_vd_26w_4s.yaml 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: "./output/mo"
  device: "gpu"
  save_interval: 5
  eval_during_train: True
  eval_interval: 1
  epochs: 30
  print_batch_step: 20
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 192, 256]
  save_inference_dir: "./inference"
  use_multilabel: True

# mixed precision training
AMP:
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
  # O1: mixed fp16
  level: O1

# model architecture
Arch:
  name: "Res2Net200_vd_26w_4s"
  pretrained: True
  class_num: 19
  infer_add_softmax: False

# loss function config for traing/eval process
Loss:
  Train:
    - MultiLabelLoss:
        weight: 1.0
        weight_ratio: True
        size_sum: True
  Eval:
    - MultiLabelLoss:
        weight: 1.0
        weight_ratio: True
        size_sum: True

Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.01
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.0005

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: MultiLabelDataset
      image_root: "dataset/VeRi/"
      cls_label_path: "dataset/VeRi/train_list.txt"
      label_ratio: True
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            size: [256, 192]
        - Padv2:
            size: [276, 212]
            pad_mode: 1
            fill_value: 0
        - RandomCropImage:
            size: [256, 192]
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: True
      shuffle: True
    loader:
      num_workers: 8
      use_shared_memory: True
  Eval:
    dataset:
      name: MultiLabelDataset
      image_root: "dataset/VeRi/"
      cls_label_path: "dataset/VeRi/test_list.txt"
      label_ratio: True
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            size: [256, 192]
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
      num_workers: 8
      use_shared_memory: True


Metric:
  Eval:
    - ATTRMetric: