preprocess_op.cpp 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <math.h>
#include <numeric>

#include "preprocess_op.h"

namespace Feature {

void Permute::Run(const cv::Mat *im, float *data) {
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
  }
}

void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
                    const std::vector<float> &std, float scale) {
  (*im).convertTo(*im, CV_32FC3, scale);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean[0]) / std[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean[1]) / std[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean[2]) / std[2];
    }
  }
}

void CenterCropImg::Run(cv::Mat &img, const int crop_size) {
  int resize_w = img.cols;
  int resize_h = img.rows;
  int w_start = int((resize_w - crop_size) / 2);
  int h_start = int((resize_h - crop_size) / 2);
  cv::Rect rect(w_start, h_start, crop_size, crop_size);
  img = img(rect);
}

void ResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
                    int resize_short_size, int size) {
  int resize_h = 0;
  int resize_w = 0;
  if (size > 0) {
    resize_h = size;
    resize_w = size;
  } else {
    int w = img.cols;
    int h = img.rows;

    float ratio = 1.f;
    if (h < w) {
      ratio = float(resize_short_size) / float(h);
    } else {
      ratio = float(resize_short_size) / float(w);
    }
    resize_h = round(float(h) * ratio);
    resize_w = round(float(w) * ratio);
  }
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
}

} // namespace Feature

namespace PaddleClas {
void Permute::Run(const cv::Mat *im, float *data) {
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
  }
}

void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
                    const std::vector<float> &scale, const bool is_scale) {
  double e = 1.0;
  if (is_scale) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
    }
  }
}

void CenterCropImg::Run(cv::Mat &img, const int crop_size) {
  int resize_w = img.cols;
  int resize_h = img.rows;
  int w_start = int((resize_w - crop_size) / 2);
  int h_start = int((resize_h - crop_size) / 2);
  cv::Rect rect(w_start, h_start, crop_size, crop_size);
  img = img(rect);
}

void ResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
                    int resize_short_size) {
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  if (h < w) {
    ratio = float(resize_short_size) / float(h);
  } else {
    ratio = float(resize_short_size) / float(w);
  }

  int resize_h = round(float(h) * ratio);
  int resize_w = round(float(w) * ratio);

  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
}

} // namespace PaddleClas