resnext101_wsl.py 11.9 KB
Newer Older
1 2
import numpy as np
import argparse
W
WuHaobo 已提交
3 4 5
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
6 7 8
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
W
WuHaobo 已提交
9

10
from paddle.fluid import framework
W
WuHaobo 已提交
11

12 13 14
import math
import sys
import time
W
WuHaobo 已提交
15

16 17 18 19
__all__ = ["ResNeXt101_32x8d_wsl",
            "ResNeXt101_wsl_32x16d_wsl",
            "ResNeXt101_wsl_32x32d_wsl",
            "ResNeXt101_wsl_32x48d_wsl"]
W
WuHaobo 已提交
20

21 22 23 24 25 26 27 28 29 30
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self, 
                input_channels, 
                output_channels,
                filter_size,
                stride=1,
                groups=1,
                act=None, 
                name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
31
        if "downsample" in name:
32
            conv_name = name + ".0"
W
WuHaobo 已提交
33
        else:
34 35 36 37 38 39 40 41 42 43
            conv_name = name 
        self._conv = Conv2D(num_channels=input_channels,
                            num_filters=output_channels,
                            filter_size=filter_size,
                            stride=stride,
                            padding=(filter_size-1)//2,
                            groups=groups,
                            act=None,
                            param_attr=ParamAttr(name=conv_name + ".weight"),
                            bias_attr=False)
W
WuHaobo 已提交
44
        if "downsample" in name:
45
            bn_name = name[:9] + "downsample.1"
W
WuHaobo 已提交
46 47
        else:
            if "conv1" == name:
48
                bn_name = "bn" + name[-1]
W
WuHaobo 已提交
49
            else:
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                bn_name = (name[:10] if name[7:9].isdigit() else name[:9]) + "bn" + name[-1]
        self._bn = BatchNorm(num_channels=output_channels,
                            act=act,
                            param_attr=ParamAttr(name=bn_name + ".weight"),
                            bias_attr=ParamAttr(name=bn_name + ".bias"),
                            moving_mean_name=bn_name + ".running_mean",
                            moving_variance_name=bn_name + ".running_var")

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._bn(x)
        return x

class Short_Cut(fluid.dygraph.Layer):
    def __init__(self, input_channels, output_channels, stride, name=None):
        super(Short_Cut, self).__init__()

        self.input_channels = input_channels
        self.output_channels = output_channels
        self.stride = stride
        if input_channels!=output_channels or stride!=1:
            self._conv = ConvBNLayer(
                input_channels, output_channels, filter_size=1, stride=stride, name=name)

    def forward(self, inputs):
        if self.input_channels!= self.output_channels or self.stride!=1:
            return self._conv(inputs)
        return inputs 

class Bottleneck_Block(fluid.dygraph.Layer):
    def __init__(self, input_channels, output_channels, stride, cardinality, width, name):
        super(Bottleneck_Block, self).__init__()

        self._conv0 = ConvBNLayer(
            input_channels, output_channels, filter_size=1, act="relu", name=name + ".conv1")
        self._conv1 = ConvBNLayer(
            output_channels, output_channels, filter_size=3, act="relu", stride=stride, groups=cardinality, name=name + ".conv2")
        self._conv2 = ConvBNLayer(
            output_channels, output_channels//(width//8), filter_size=1, act=None, name=name + ".conv3")
        self._short = Short_Cut(
            input_channels, output_channels//(width//8), stride=stride, name=name + ".downsample")

    def forward(self, inputs):
        x = self._conv0(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
        y = self._short(inputs)
        return fluid.layers.elementwise_add(x, y, act="relu")

class ResNeXt101_wsl(fluid.dygraph.Layer):
    def __init__(self, layers=101, cardinality=32, width=48, class_dim=1000):
        super(ResNeXt101_wsl, self).__init__()

        self.class_dim = class_dim

        self.layers = layers
        self.cardinality = cardinality
        self.width = width
        self.scale = width//8

        self.depth = [3, 4, 23, 3]
        self.base_width = cardinality * width
        num_filters = [self.base_width*i for i in [1,2,4,8]] #[256, 512, 1024, 2048]
        self._conv_stem = ConvBNLayer(
            3, 64, 7, stride=2, act="relu", name="conv1")
        self._pool = Pool2D(pool_size=3,
                            pool_stride=2,
                            pool_padding=1,
                            pool_type="max")

        self._conv1_0 = Bottleneck_Block(
            64, num_filters[0], stride=1, cardinality=self.cardinality, width=self.width, name="layer1.0")
        self._conv1_1 = Bottleneck_Block(
            num_filters[0]//(width//8), num_filters[0], stride=1, cardinality=self.cardinality, width=self.width, name="layer1.1")
        self._conv1_2 = Bottleneck_Block(
            num_filters[0]//(width//8), num_filters[0], stride=1, cardinality=self.cardinality, width=self.width, name="layer1.2")

        self._conv2_0 = Bottleneck_Block(
            num_filters[0]//(width//8), num_filters[1], stride=2, cardinality=self.cardinality, width=self.width, name="layer2.0")
        self._conv2_1 = Bottleneck_Block(
            num_filters[1]//(width//8), num_filters[1], stride=1, cardinality=self.cardinality, width=self.width, name="layer2.1")
        self._conv2_2 = Bottleneck_Block(
            num_filters[1]//(width//8), num_filters[1], stride=1, cardinality=self.cardinality, width=self.width, name="layer2.2")
        self._conv2_3 = Bottleneck_Block(
            num_filters[1]//(width//8), num_filters[1], stride=1, cardinality=self.cardinality, width=self.width, name="layer2.3")

        self._conv3_0 = Bottleneck_Block(
            num_filters[1]//(width//8), num_filters[2], stride=2, cardinality=self.cardinality, width=self.width, name="layer3.0")
        self._conv3_1 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.1")
        self._conv3_2 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.2")
        self._conv3_3 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.3")
        self._conv3_4 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.4")
        self._conv3_5 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.5")
        self._conv3_6 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.6")
        self._conv3_7 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.7")
        self._conv3_8 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.8")
        self._conv3_9 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.9")
        self._conv3_10 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.10")
        self._conv3_11 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.11")
        self._conv3_12 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.12")
        self._conv3_13 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.13")
        self._conv3_14 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.14")
        self._conv3_15 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.15")
        self._conv3_16 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.16")
        self._conv3_17 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.17")
        self._conv3_18 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.18")
        self._conv3_19 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.19")
        self._conv3_20 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.20")
        self._conv3_21 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.21")
        self._conv3_22 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[2], stride=1, cardinality=self.cardinality, width=self.width, name="layer3.22")

        self._conv4_0 = Bottleneck_Block(
            num_filters[2]//(width//8), num_filters[3], stride=2, cardinality=self.cardinality, width=self.width, name="layer4.0")
        self._conv4_1 = Bottleneck_Block(
            num_filters[3]//(width//8), num_filters[3], stride=1, cardinality=self.cardinality, width=self.width, name="layer4.1")
        self._conv4_2 = Bottleneck_Block(
            num_filters[3]//(width//8), num_filters[3], stride=1, cardinality=self.cardinality, width=self.width, name="layer4.2")

        self._avg_pool = Pool2D(pool_type="avg", global_pooling=True)
        self._out = Linear(input_dim=num_filters[3]//(width//8),
                        output_dim=class_dim,
                        param_attr=ParamAttr(name="fc.weight"),
                        bias_attr=ParamAttr(name="fc.bias"))

    def forward(self, inputs):
        x = self._conv_stem(inputs)
        x = self._pool(x)

        x = self._conv1_0(x)
        x = self._conv1_1(x)
        x = self._conv1_2(x)
W
WuHaobo 已提交
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        x = self._conv2_0(x)
        x = self._conv2_1(x)
        x = self._conv2_2(x)
        x = self._conv2_3(x)

        x = self._conv3_0(x)
        x = self._conv3_1(x)
        x = self._conv3_2(x)
        x = self._conv3_3(x)
        x = self._conv3_4(x)
        x = self._conv3_5(x)
        x = self._conv3_6(x)
        x = self._conv3_7(x)
        x = self._conv3_8(x)
        x = self._conv3_9(x)
        x = self._conv3_10(x)
        x = self._conv3_11(x)
        x = self._conv3_12(x)
        x = self._conv3_13(x)
        x = self._conv3_14(x)
        x = self._conv3_15(x)
        x = self._conv3_16(x)
        x = self._conv3_17(x)
        x = self._conv3_18(x)
        x = self._conv3_19(x)
        x = self._conv3_20(x)
        x = self._conv3_21(x)
        x = self._conv3_22(x)

        x = self._conv4_0(x)
        x = self._conv4_1(x)
        x = self._conv4_2(x)

        x = self._avg_pool(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._out(x)
        return x
W
WuHaobo 已提交
241 242 243

def ResNeXt101_32x8d_wsl():
    model = ResNeXt101_wsl(cardinality=32, width=8)
244
    return model 
W
WuHaobo 已提交
245 246 247

def ResNeXt101_32x16d_wsl():
    model = ResNeXt101_wsl(cardinality=32, width=16)
248
    return model 
W
WuHaobo 已提交
249 250 251

def ResNeXt101_32x32d_wsl():
    model = ResNeXt101_wsl(cardinality=32, width=32)
252
    return model 
W
WuHaobo 已提交
253 254 255

def ResNeXt101_32x48d_wsl():
    model = ResNeXt101_wsl(cardinality=32, width=48)
256
    return model