darknet.py 5.8 KB
Newer Older
1 2 3 4
# coding=UTF-8
import numpy as np
import argparse
import paddle
W
WuHaobo 已提交
5 6
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
7 8 9 10 11 12
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

W
WuHaobo 已提交
13
import math
14 15 16
import sys
import time

W
WuHaobo 已提交
17 18 19
__all__ = ["DarkNet53"]


20 21 22 23 24 25 26 27 28 29 30 31 32
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride,
                 padding,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=input_channels,
            num_filters=output_channels,
W
WuHaobo 已提交
33 34 35 36 37 38 39 40
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + ".conv.weights"),
            bias_attr=False)

        bn_name = name + ".bn"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        self._bn = BatchNorm(
            num_channels=output_channels,
            act="relu",
            param_attr=ParamAttr(name=bn_name + ".scale"),
            bias_attr=ParamAttr(name=bn_name + ".offset"),
            moving_mean_name=bn_name + ".mean",
            moving_variance_name=bn_name + ".var")

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._bn(x)
        return x


class Basic_Block(fluid.dygraph.Layer):
    def __init__(self, input_channels, output_channels, name=None):
        super(Basic_Block, self).__init__()

        self._conv1 = ConvBNLayer(
            input_channels, output_channels, 1, 1, 0, name=name + ".0")
        self._conv2 = ConvBNLayer(
            output_channels, output_channels * 2, 3, 1, 1, name=name + ".1")

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)
        return fluid.layers.elementwise_add(x=inputs, y=x)


class DarkNet(fluid.dygraph.Layer):
    def __init__(self, class_dim=1000):
        super(DarkNet53, self).__init__()

        self.stages = [1, 2, 8, 8, 4]
        self._conv1 = ConvBNLayer(3, 32, 3, 1, 1, name="yolo_input")
        self._conv2 = ConvBNLayer(
            32, 64, 3, 2, 1, name="yolo_input.downsample")

        self._basic_block_01 = Basic_Block(64, 32, name="stage.0.0")
        self._downsample_0 = ConvBNLayer(
            64, 128, 3, 2, 1, name="stage.0.downsample")

        self._basic_block_11 = Basic_Block(128, 64, name="stage.1.0")
        self._basic_block_12 = Basic_Block(128, 64, name="stage.1.1")
        self._downsample_1 = ConvBNLayer(
            128, 256, 3, 2, 1, name="stage.1.downsample")

        self._basic_block_21 = Basic_Block(256, 128, name="stage.2.0")
        self._basic_block_22 = Basic_Block(256, 128, name="stage.2.1")
        self._basic_block_23 = Basic_Block(256, 128, name="stage.2.2")
        self._basic_block_24 = Basic_Block(256, 128, name="stage.2.3")
        self._basic_block_25 = Basic_Block(256, 128, name="stage.2.4")
        self._basic_block_26 = Basic_Block(256, 128, name="stage.2.5")
        self._basic_block_27 = Basic_Block(256, 128, name="stage.2.6")
        self._basic_block_28 = Basic_Block(256, 128, name="stage.2.7")
        self._downsample_2 = ConvBNLayer(
            256, 512, 3, 2, 1, name="stage.2.downsample")

        self._basic_block_31 = Basic_Block(512, 256, name="stage.3.0")
        self._basic_block_32 = Basic_Block(512, 256, name="stage.3.1")
        self._basic_block_33 = Basic_Block(512, 256, name="stage.3.2")
        self._basic_block_34 = Basic_Block(512, 256, name="stage.3.3")
        self._basic_block_35 = Basic_Block(512, 256, name="stage.3.4")
        self._basic_block_36 = Basic_Block(512, 256, name="stage.3.5")
        self._basic_block_37 = Basic_Block(512, 256, name="stage.3.6")
        self._basic_block_38 = Basic_Block(512, 256, name="stage.3.7")
        self._downsample_3 = ConvBNLayer(
            512, 1024, 3, 2, 1, name="stage.3.downsample")

        self._basic_block_41 = Basic_Block(1024, 512, name="stage.4.0")
        self._basic_block_42 = Basic_Block(1024, 512, name="stage.4.1")
        self._basic_block_43 = Basic_Block(1024, 512, name="stage.4.2")
        self._basic_block_44 = Basic_Block(1024, 512, name="stage.4.3")

        self._pool = Pool2D(pool_type="avg", global_pooling=True)

        stdv = 1.0 / math.sqrt(1024.0)
        self._out = Linear(
            input_dim=1024,
            output_dim=class_dim,
            param_attr=ParamAttr(
                name="fc_weights",
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)

        x = self._basic_block_01(x)
        x = self._downsample_0(x)

        x = self._basic_block_11(x)
        x = self._basic_block_12(x)
        x = self._downsample_1(x)

        x = self._basic_block_21(x)
        x = self._basic_block_22(x)
        x = self._basic_block_23(x)
        x = self._basic_block_24(x)
        x = self._basic_block_25(x)
        x = self._basic_block_26(x)
        x = self._basic_block_27(x)
        x = self._basic_block_28(x)
        x = self._downsample_2(x)

        x = self._basic_block_31(x)
        x = self._basic_block_32(x)
        x = self._basic_block_33(x)
        x = self._basic_block_34(x)
        x = self._basic_block_35(x)
        x = self._basic_block_36(x)
        x = self._basic_block_37(x)
        x = self._basic_block_38(x)
        x = self._downsample_3(x)

        x = self._basic_block_41(x)
        x = self._basic_block_42(x)
        x = self._basic_block_43(x)
        x = self._basic_block_44(x)

        x = self._pool(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._out(x)
        return x


def DarkNet53(**args):
    model = DarkNet(**args)
    return model