train.py 7.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))

K
kangguangli 已提交
26 27 28
import numpy as np
import random

littletomatodonkey's avatar
littletomatodonkey 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import paddle
from paddle.distributed import fleet
from visualdl import LogWriter

from ppcls.data import build_dataloader
from ppcls.utils.config import get_config, print_config
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.static.save_load import init_model, save_model
from ppcls.static import program


def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
        default='configs/ResNet/ResNet50.yaml',
        help='config file path')
49 50 51 52 53 54 55
    parser.add_argument(
        '-p',
        '--profiler_options',
        type=str,
        default=None,
        help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
    )
littletomatodonkey's avatar
littletomatodonkey 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    """
    all the config of training paradigm should be in config["Global"]
    """
    config = get_config(args.config, overrides=args.override, show=False)
K
kangguangli 已提交
71 72 73 74 75 76 77 78 79

    # set seed
    seed = config["Global"].get("seed", False)
    if seed or seed == 0:
        assert isinstance(seed, int), "The 'seed' must be a integer!"
        paddle.seed(seed)
        np.random.seed(seed)
        random.seed(seed)

littletomatodonkey's avatar
littletomatodonkey 已提交
80 81 82 83 84 85
    global_config = config["Global"]

    mode = "train"

    log_file = os.path.join(global_config['output_dir'],
                            config["Arch"]["name"], f"{mode}.log")
D
dongshuilong 已提交
86
    init_logger(log_file=log_file)
littletomatodonkey's avatar
littletomatodonkey 已提交
87 88 89 90
    print_config(config)

    if global_config.get("is_distributed", True):
        fleet.init(is_collective=True)
G
gaotingquan 已提交
91

littletomatodonkey's avatar
littletomatodonkey 已提交
92
    # assign the device
G
gaotingquan 已提交
93 94 95 96
    assert global_config[
        "device"] in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
    device = paddle.set_device(global_config["device"])

littletomatodonkey's avatar
littletomatodonkey 已提交
97 98 99
    # amp related config
    if 'AMP' in config:
        AMP_RELATED_FLAGS_SETTING = {
W
Wei Shengyu 已提交
100 101 102 103
            'FLAGS_cudnn_exhaustive_search': 1,
            'FLAGS_conv_workspace_size_limit': 1500,
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
littletomatodonkey's avatar
littletomatodonkey 已提交
104
        }
W
Wei Shengyu 已提交
105
        os.environ['FLAGS_cudnn_batchnorm_spatial_persistent'] = '1'
G
gaotingquan 已提交
106
        paddle.set_flags(AMP_RELATED_FLAGS_SETTING)
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108 109 110 111 112 113 114 115 116 117

    # visualDL
    vdl_writer = None
    if global_config["use_visualdl"]:
        vdl_dir = os.path.join(global_config["output_dir"], "vdl")
        vdl_writer = LogWriter(vdl_dir)

    # build dataloader
    eval_dataloader = None
    use_dali = global_config.get('use_dali', False)

118 119
    class_num = config["Arch"].get("class_num", None)
    config["DataLoader"].update({"class_num": class_num})
T
Tingquan Gao 已提交
120 121
    train_dataloader = build_dataloader(
        config["DataLoader"], "Train", device=device, use_dali=use_dali)
littletomatodonkey's avatar
littletomatodonkey 已提交
122
    if global_config["eval_during_train"]:
T
Tingquan Gao 已提交
123 124
        eval_dataloader = build_dataloader(
            config["DataLoader"], "Eval", device=device, use_dali=use_dali)
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138

    step_each_epoch = len(train_dataloader)

    # startup_prog is used to do some parameter init work,
    # and train prog is used to hold the network
    startup_prog = paddle.static.Program()
    train_prog = paddle.static.Program()

    best_top1_acc = 0.0  # best top1 acc record

    train_fetchs, lr_scheduler, train_feeds, optimizer = program.build(
        config,
        train_prog,
        startup_prog,
139
        class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        step_each_epoch=step_each_epoch,
        is_train=True,
        is_distributed=global_config.get("is_distributed", True))

    if global_config["eval_during_train"]:
        eval_prog = paddle.static.Program()
        eval_fetchs, _, eval_feeds, _ = program.build(
            config,
            eval_prog,
            startup_prog,
            is_train=False,
            is_distributed=global_config.get("is_distributed", True))
        # clone to prune some content which is irrelevant in eval_prog
        eval_prog = eval_prog.clone(for_test=True)

    # create the "Executor" with the statement of which device
    exe = paddle.static.Executor(device)
    # Parameter initialization
    exe.run(startup_prog)
    # load pretrained models or checkpoints
    init_model(global_config, train_prog, exe)

162
    if 'AMP' in config:
163 164 165 166 167 168 169 170 171
        if config["AMP"].get("level", "O1").upper() == "O2":
            use_fp16_test = True
            msg = "Only support FP16 evaluation when AMP O2 is enabled."
            logger.warning(msg)
        elif "use_fp16_test" in config["AMP"]:
            use_fp16_test = config["AMP"].get["use_fp16_test"]
        else:
            use_fp16_test = False

littletomatodonkey's avatar
littletomatodonkey 已提交
172 173 174 175
        optimizer.amp_init(
            device,
            scope=paddle.static.global_scope(),
            test_program=eval_prog
176
            if global_config["eval_during_train"] else None,
177
            use_fp16_test=use_fp16_test)
littletomatodonkey's avatar
littletomatodonkey 已提交
178 179 180 181 182 183 184 185

    if not global_config.get("is_distributed", True):
        compiled_train_prog = program.compile(
            config, train_prog, loss_name=train_fetchs["loss"][0].name)
    else:
        compiled_train_prog = train_prog

    if eval_dataloader is not None:
K
kangguangli 已提交
186 187 188 189
        if not global_config.get("is_distributed", True):
            compiled_eval_prog = program.compile(config, eval_prog)
        else:
            compiled_eval_prog = eval_prog
littletomatodonkey's avatar
littletomatodonkey 已提交
190 191 192 193 194

    for epoch_id in range(global_config["epochs"]):
        # 1. train with train dataset
        program.run(train_dataloader, exe, compiled_train_prog, train_feeds,
                    train_fetchs, epoch_id, 'train', config, vdl_writer,
195
                    lr_scheduler, args.profiler_options)
196
        # 2. evaluate with eval dataset
littletomatodonkey's avatar
littletomatodonkey 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        if global_config["eval_during_train"] and epoch_id % global_config[
                "eval_interval"] == 0:
            top1_acc = program.run(eval_dataloader, exe, compiled_eval_prog,
                                   eval_feeds, eval_fetchs, epoch_id, "eval",
                                   config)
            if top1_acc > best_top1_acc:
                best_top1_acc = top1_acc
                message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
                    best_top1_acc, epoch_id)
                logger.info(message)
                if epoch_id % global_config["save_interval"] == 0:

                    model_path = os.path.join(global_config["output_dir"],
                                              config["Arch"]["name"])
                    save_model(train_prog, model_path, "best_model")

        # 3. save the persistable model
        if epoch_id % global_config["save_interval"] == 0:
            model_path = os.path.join(global_config["output_dir"],
                                      config["Arch"]["name"])
            save_model(train_prog, model_path, epoch_id)


if __name__ == '__main__':
    paddle.enable_static()
    args = parse_args()
    main(args)