optimizer.py 6.5 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
from paddle import optimizer as optim
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum,
35
                 weight_decay=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
36 37
                 grad_clip=None,
                 multi_precision=False):
G
gaotingquan 已提交
38
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40
        self.learning_rate = learning_rate
        self.momentum = momentum
41 42
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
littletomatodonkey's avatar
littletomatodonkey 已提交
43
        self.multi_precision = multi_precision
littletomatodonkey's avatar
littletomatodonkey 已提交
44

G
gaotingquan 已提交
45 46
    def __call__(self, model_list):
        parameters = sum([m.parameters() for m in model_list], [])
47
        opt = optim.Momentum(
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49
            learning_rate=self.learning_rate,
            momentum=self.momentum,
50 51
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
littletomatodonkey's avatar
littletomatodonkey 已提交
52
            multi_precision=self.multi_precision,
53 54 55 56 57 58 59 60 61 62 63 64 65 66
            parameters=parameters)
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
67 68
                 lazy_mode=False,
                 multi_precision=False):
69 70 71 72 73 74 75 76 77 78
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode
littletomatodonkey's avatar
littletomatodonkey 已提交
79
        self.multi_precision = multi_precision
80

G
gaotingquan 已提交
81 82
    def __call__(self, model_list):
        parameters = sum([m.parameters() for m in model_list], [])
83 84 85 86 87 88 89 90 91
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
littletomatodonkey's avatar
littletomatodonkey 已提交
92
            multi_precision=self.multi_precision,
93
            parameters=parameters)
littletomatodonkey's avatar
littletomatodonkey 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
111
                 momentum=0.0,
littletomatodonkey's avatar
littletomatodonkey 已提交
112 113
                 rho=0.95,
                 epsilon=1e-6,
114
                 weight_decay=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
115 116
                 grad_clip=None,
                 multi_precision=False):
G
gaotingquan 已提交
117
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
118 119 120 121
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
122 123
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
littletomatodonkey's avatar
littletomatodonkey 已提交
124

G
gaotingquan 已提交
125 126
    def __call__(self, model_list):
        parameters = sum([m.parameters() for m in model_list], [])
127
        opt = optim.RMSProp(
littletomatodonkey's avatar
littletomatodonkey 已提交
128 129 130 131
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
132 133 134
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=parameters)
littletomatodonkey's avatar
littletomatodonkey 已提交
135
        return opt
G
gaotingquan 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189


class AdamW(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 weight_decay=None,
                 multi_precision=False,
                 grad_clip=None,
                 no_weight_decay_name=None,
                 one_dim_param_no_weight_decay=False,
                 **args):
        super().__init__()
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.grad_clip = grad_clip
        self.weight_decay = weight_decay
        self.multi_precision = multi_precision
        self.no_weight_decay_name_list = no_weight_decay_name.split(
        ) if no_weight_decay_name else []
        self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay

    def __call__(self, model_list):
        parameters = sum([m.parameters() for m in model_list], [])

        self.no_weight_decay_param_name_list = [
            p.name for model in model_list for n, p in model.named_parameters()
            if any(nd in n for nd in self.no_weight_decay_name_list)
        ]

        if self.one_dim_param_no_weight_decay:
            self.no_weight_decay_param_name_list += [
                p.name for model in model_list
                for n, p in model.named_parameters() if len(p.shape) == 1
            ]

        opt = optim.AdamW(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            parameters=parameters,
            weight_decay=self.weight_decay,
            multi_precision=self.multi_precision,
            grad_clip=self.grad_clip,
            apply_decay_param_fun=self._apply_decay_param_fun)
        return opt

    def _apply_decay_param_fun(self, name):
        return name not in self.no_weight_decay_param_name_list