test_cpp_serving_client.py 4.0 KB
Newer Older
S
stephon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
import faiss
import os
import pickle

H
debug  
HydrogenSulfate 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
rec_nms_thresold = 0.05
rec_score_thres = 0.5
feature_normalize = True
return_k = 1
index_dir = "../../drink_dataset_v1.0/index"


def init_index(index_dir):
    assert os.path.exists(os.path.join(
        index_dir, "vector.index")), "vector.index not found ..."
    assert os.path.exists(os.path.join(
        index_dir, "id_map.pkl")), "id_map.pkl not found ... "

    searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))

    with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
        id_map = pickle.load(fd)
    return searcher, id_map


#get box
def nms_to_rec_results(results, thresh=0.1):
    filtered_results = []

    x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
    y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
    x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
    y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
    scores = np.array([r["rec_scores"] for r in results])

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]
    while order.size > 0:
        i = order[0]
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]
        filtered_results.append(results[i])
    return filtered_results


def postprocess(fetch_dict, feature_normalize, det_boxes, searcher, id_map,
                return_k, rec_score_thres, rec_nms_thresold):
    batch_features = fetch_dict["features"]

    #do feature norm
    if feature_normalize:
        feas_norm = np.sqrt(
            np.sum(np.square(batch_features), axis=1, keepdims=True))
        batch_features = np.divide(batch_features, feas_norm)

    scores, docs = searcher.search(batch_features, return_k)

    results = []
    for i in range(scores.shape[0]):
        pred = {}
        if scores[i][0] >= rec_score_thres:
            pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
            pred["rec_docs"] = id_map[docs[i][0]].split()[1]
            pred["rec_scores"] = scores[i][0]
            results.append(pred)

    #do nms
    results = nms_to_rec_results(results, rec_nms_thresold)
    return results


#do client
S
stephon 已提交
100
if __name__ == "__main__":
H
debug  
HydrogenSulfate 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    client = Client()
    client.load_client_config([
        "../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client",
        "../../models/general_PPLCNet_x2_5_lite_v1.0_client"
    ])
    client.connect(['127.0.0.1:9400'])

    im = cv2.imread("../../drink_dataset_v1.0/test_images/001.jpeg")
    im_shape = np.array(im.shape[:2]).reshape(-1)
    fetch_map = client.predict(
        feed={"image": im,
              "im_shape": im_shape},
        fetch=["features", "boxes"],
        batch=False)
H
HydrogenSulfate 已提交
115

H
debug  
HydrogenSulfate 已提交
116 117 118 119 120 121
    #add retrieval procedure
    det_boxes = fetch_map["boxes"]
    searcher, id_map = init_index(index_dir)
    results = postprocess(fetch_map, feature_normalize, det_boxes, searcher,
                          id_map, return_k, rec_score_thres, rec_nms_thresold)
    print(results)