__init__.py 6.1 KB
Newer Older
D
dongshuilong 已提交
1
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
littletomatodonkey 已提交
15 16 17
import copy
import importlib
import paddle.nn as nn
A
Aurelius84 已提交
18 19
from paddle.jit import to_static
from paddle.static import InputSpec
L
littletomatodonkey 已提交
20

D
dongshuilong 已提交
21
from . import backbone, gears
W
weishengyu 已提交
22
from .backbone import *
D
dongshuilong 已提交
23
from .gears import build_gear
W
WuHaobo 已提交
24
from .utils import *
R
root 已提交
25 26 27 28 29
from .backbone.base.theseus_layer import TheseusLayer
from ..utils import logger
from ..utils.save_load import load_dygraph_pretrain
from .slim import prune_model, quantize_model
from .distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
W
weishengyu 已提交
30

wc晨曦's avatar
wc晨曦 已提交
31
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
B
Bin Lu 已提交
32

L
littletomatodonkey 已提交
33

littletomatodonkey's avatar
littletomatodonkey 已提交
34
def build_model(config, mode="train"):
W
weishengyu 已提交
35 36
    arch_config = copy.deepcopy(config["Arch"])
    model_type = arch_config.pop("name")
C
cuicheng01 已提交
37
    use_sync_bn = arch_config.pop("use_sync_bn", False)
L
littletomatodonkey 已提交
38
    mod = importlib.import_module(__name__)
W
weishengyu 已提交
39
    arch = getattr(mod, model_type)(**arch_config)
C
cuicheng01 已提交
40
    if use_sync_bn:
41 42 43 44 45
        if config["Global"]["device"] == "gpu":
            arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
        else:
            msg = "SyncBatchNorm can only be used on GPU device. The releated setting has been ignored."
            logger.warning(msg)
C
cuicheng01 已提交
46

W
weishengyu 已提交
47 48
    if isinstance(arch, TheseusLayer):
        prune_model(config, arch)
littletomatodonkey's avatar
littletomatodonkey 已提交
49
        quantize_model(config, arch, mode)
50

L
littletomatodonkey 已提交
51 52 53
    return arch


A
Aurelius84 已提交
54 55 56 57 58 59 60
def apply_to_static(config, model):
    support_to_static = config['Global'].get('to_static', False)

    if support_to_static:
        specs = None
        if 'image_shape' in config['Global']:
            specs = [InputSpec([None] + config['Global']['image_shape'])]
61
            specs[0].stop_gradient = True
A
Aurelius84 已提交
62 63 64 65 66 67
        model = to_static(model, input_spec=specs)
        logger.info("Successfully to apply @to_static with specs: {}".format(
            specs))
    return model


W
weishengyu 已提交
68
class RecModel(TheseusLayer):
L
littletomatodonkey 已提交
69 70 71 72
    def __init__(self, **config):
        super().__init__()
        backbone_config = config["Backbone"]
        backbone_name = backbone_config.pop("name")
73 74 75
        self.decoup = False
        if backbone_config.get('decoup', False):
            self.decoup = backbone_config.pop('decoup')
D
dongshuilong 已提交
76
        self.backbone = eval(backbone_name)(**backbone_config)
D
dongshuilong 已提交
77
        if "BackboneStopLayer" in config:
D
dongshuilong 已提交
78 79
            backbone_stop_layer = config["BackboneStopLayer"]["name"]
            self.backbone.stop_after(backbone_stop_layer)
D
dongshuilong 已提交
80

D
dongshuilong 已提交
81 82
        if "Neck" in config:
            self.neck = build_gear(config["Neck"])
L
littletomatodonkey 已提交
83 84
        else:
            self.neck = None
D
dongshuilong 已提交
85

D
dongshuilong 已提交
86 87 88 89
        if "Head" in config:
            self.head = build_gear(config["Head"])
        else:
            self.head = None
L
littletomatodonkey 已提交
90

W
weishengyu 已提交
91
    def forward(self, x, label=None):
92
        
93
        out = dict()
D
dongshuilong 已提交
94
        x = self.backbone(x)
95
        
96
        out["backbone"] = x
97 98 99 100 101 102 103
        if self.decoup:
            logits_index, features_index = self.decoup['logits_index'], self.decoup['features_index']
            logits, feat = x[logits_index], x[features_index]
            out['logits'] = logits
            out['features'] =feat
            return out

L
littletomatodonkey 已提交
104
        if self.neck is not None:
105 106 107
            feat = self.neck(x)
            out["neck"] = feat
        out["features"] = out['neck'] if self.neck else x
D
dongshuilong 已提交
108
        if self.head is not None:
109
            y = self.head(out['features'], label)
littletomatodonkey's avatar
littletomatodonkey 已提交
110
            out["logits"] = y
111
        return out
112 113 114 115 116 117


class DistillationModel(nn.Layer):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
118 119
                 freeze_params_list=None,
                 **kargs):
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        super().__init__()
        assert isinstance(models, list)
        self.model_list = []
        self.model_name_list = []
        if pretrained_list is not None:
            assert len(pretrained_list) == len(models)

        if freeze_params_list is None:
            freeze_params_list = [False] * len(models)
        assert len(freeze_params_list) == len(models)
        for idx, model_config in enumerate(models):
            assert len(model_config) == 1
            key = list(model_config.keys())[0]
            model_config = model_config[key]
            model_name = model_config.pop("name")
            model = eval(model_name)(**model_config)

            if freeze_params_list[idx]:
                for param in model.parameters():
                    param.trainable = False
            self.model_list.append(self.add_sublayer(key, model))
            self.model_name_list.append(key)

        if pretrained_list is not None:
            for idx, pretrained in enumerate(pretrained_list):
                if pretrained is not None:
                    load_dygraph_pretrain(
                        self.model_name_list[idx], path=pretrained)

    def forward(self, x, label=None):
        result_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                result_dict[model_name] = self.model_list[idx](x)
            else:
155
                result_dict[model_name] = self.model_list[idx](x, label)
156
        return result_dict
wc晨曦's avatar
wc晨曦 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177


class AttentionModel(DistillationModel):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
                 freeze_params_list=None,
                 **kargs):
        super().__init__(models, pretrained_list, freeze_params_list, **kargs)

    def forward(self, x, label=None):
        result_dict = dict()
        out = x
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                out = self.model_list[idx](out)
                result_dict.update(out)
            else:
                out = self.model_list[idx](out, label)
                result_dict.update(out)
        return result_dict