# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from .node import DownpourServer from .node import DownpourWorker from ..backward import append_backward import ps_pb2 as pslib from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_inputs from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_outputs from google.protobuf import text_format class DownpourSGD(object): """ Distributed optimizer of downpour stochastic gradient descent Standard implementation of Google's Downpour SGD in Large Scale Distributed Deep Networks Args: learning_rate (float): the learning rate used to update parameters. \ Can be a float value Examples: .. code-block:: python downpour_sgd = fluid.distributed.DownpourSGD(learning_rate=0.2) downpour_sgd.minimize(cost) """ def __init__(self, learning_rate=0.001, window=1): # todo(guru4elephant): add more optimizers here as argument # todo(guru4elephant): make learning_rate as a variable self.learning_rate_ = learning_rate self.window_ = window self.type = "downpour" self.data_norm_name = [ ".batch_size", ".batch_square_sum", ".batch_sum", ".batch_size@GRAD", ".batch_square_sum@GRAD", ".batch_sum@GRAD" ] def minimize(self, losses, startup_program=None, parameter_list=None, no_grad_set=None): """ DownpounSGD is a distributed optimizer so that user can call minimize to generate backward operators and optimization operators within minmize function Args: loss(Variable): loss variable defined by user startup_program(Program): startup program that defined by user parameter_list(str list): parameter names defined by users no_grad_set(set): a set of variables that is defined by users so that these variables do not need gradient computation Returns: [ps_param, worker_skipped_ops] ps_param: parameter server protobuf desc worker_skipped_ops: operator names that need to be skipped during execution """ if not isinstance(losses, list): raise ValueError('losses is a list, just lick [model.cost]') table_name = find_distributed_lookup_table(losses[0].block.program) prefetch_slots = find_distributed_lookup_table_inputs( losses[0].block.program, table_name) prefetch_slots_emb = find_distributed_lookup_table_outputs( losses[0].block.program, table_name) ps_param = pslib.PSParameter() server = DownpourServer() worker = DownpourWorker(self.window_) sparse_table_index = 0 server.add_sparse_table(sparse_table_index, self.learning_rate_, prefetch_slots, prefetch_slots_emb) worker.add_sparse_table(sparse_table_index, self.learning_rate_, prefetch_slots, prefetch_slots_emb) dense_table_index = 1 program_configs = [] for loss_index in range(len(losses)): program_config = ps_param.trainer_param.program_config.add() program_config.program_id = str( id(losses[loss_index].block.program)) program_config.pull_sparse_table_id.extend([sparse_table_index]) program_config.push_sparse_table_id.extend([sparse_table_index]) params_grads = sorted( append_backward(losses[loss_index], parameter_list, no_grad_set), key=lambda x: x[0].name) params = [] grads = [] data_norm_params = [] data_norm_grads = [] for i in params_grads: is_data_norm_data = False for data_norm_name in self.data_norm_name: if i[0].name.endswith(data_norm_name): is_data_norm_data = True data_norm_params.append(i[0]) if not is_data_norm_data: params.append(i[0]) for i in params_grads: is_data_norm_data = False for data_norm_grad in self.data_norm_name: if i[0].name.endswith(data_norm_grad): is_data_norm_data = True data_norm_grads.append(i[1]) if not is_data_norm_data: grads.append(i[1]) server.add_dense_table(dense_table_index, self.learning_rate_, params, grads) worker.add_dense_table(dense_table_index, self.learning_rate_, params, grads) program_config.pull_dense_table_id.extend([dense_table_index]) program_config.push_dense_table_id.extend([dense_table_index]) if len(data_norm_params) != 0 and len(data_norm_grads) != 0: dense_table_index += 1 server.add_data_norm_table(dense_table_index, self.learning_rate_, data_norm_params, data_norm_grads) worker.add_dense_table(dense_table_index, self.learning_rate_, data_norm_params, data_norm_grads) program_config.pull_dense_table_id.extend([dense_table_index]) program_config.push_dense_table_id.extend([dense_table_index]) dense_table_index += 1 program_configs.append(program_config) ps_param.server_param.CopyFrom(server.get_desc()) ps_param.trainer_param.CopyFrom(worker.get_desc()) for program_config in program_configs: ps_param.trainer_param.program_config.extend([program_config]) # Todo(guru4elephant): figure out how to support more sparse parameters # currently only support lookup_table worker_skipped_ops = ["lookup_table", "lookup_table_grad"] ps_param.trainer_param.skip_op.extend(worker_skipped_ops) # all fleet operations should be defined in operators in the future # we want to return an object here containing: # 1) worker execution strategy # 2) pserver execution strategy # 3) fleet configurations # 4) skipped operators in runtime # 5) distributed optimization opt_info = {} opt_info["trainer"] = "DistMultiTrainer" opt_info["device_worker"] = "DownpourSGD" opt_info["optimizer"] = "DownpourSGD" opt_info["fleet_desc"] = ps_param opt_info["worker_skipped_ops"] = worker_skipped_ops return opt_info