# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from eager_op_test import OpTest import paddle import paddle.fluid as fluid from paddle.fluid import Program, core, program_guard # Situation 1: shape is a list(without tensor) class TestExpandV2OpRank1(OpTest): def setUp(self): self.op_type = "expand_v2" self.prim_op_type = "prim" self.init_data() self.python_api = paddle.expand self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")} self.attrs = {'shape': self.shape} output = np.tile(self.inputs['X'], self.expand_times) self.outputs = {'Out': output} self.enable_cinn = False def init_data(self): self.ori_shape = [100] self.shape = [100] self.expand_times = [1] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1): def init_data(self): self.ori_shape = [120] self.shape = [2, 120] self.expand_times = [2, 1] class TestExpandV2OpRank2(TestExpandV2OpRank1): def init_data(self): self.ori_shape = [1, 140] self.shape = [12, 140] self.expand_times = [12, 1] class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1): def init_data(self): self.ori_shape = (2, 10, 5) self.shape = (2, 10, 5) self.expand_times = (1, 1, 1) class TestExpandV2OpRank4(TestExpandV2OpRank1): def init_data(self): self.ori_shape = (2, 4, 5, 7) self.shape = (-1, -1, -1, -1) self.expand_times = (1, 1, 1, 1) # Situation 2: shape is a list(with tensor) class TestExpandV2OpRank1_tensor_attr(OpTest): def setUp(self): self.op_type = "expand_v2" self.prim_op_type = "prim" self.python_api = paddle.expand self.init_data() expand_shapes_tensor = [] for index, ele in enumerate(self.expand_shape): expand_shapes_tensor.append( ("x" + str(index), np.ones((1)).astype('int32') * ele) ) self.inputs = { 'X': np.random.random(self.ori_shape).astype("float64"), 'expand_shapes_tensor': expand_shapes_tensor, } self.attrs = {"shape": self.infer_expand_shape} output = np.tile(self.inputs['X'], self.expand_times) self.outputs = {'Out': output} def init_data(self): self.ori_shape = [100] self.expand_times = [1] self.expand_shape = [100] self.infer_expand_shape = [-1] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr): def init_data(self): self.ori_shape = [12, 14] self.expand_times = [1, 1] self.expand_shape = [12, 14] self.infer_expand_shape = [12, -1] # Situation 3: shape is a tensor class TestExpandV2OpRank1_tensor(OpTest): def setUp(self): self.op_type = "expand_v2" self.prim_op_type = "prim" self.python_api = paddle.expand self.init_data() self.inputs = { 'X': np.random.random(self.ori_shape).astype("float64"), 'Shape': np.array(self.expand_shape).astype("int32"), } self.attrs = {} output = np.tile(self.inputs['X'], self.expand_times) self.outputs = {'Out': output} def init_data(self): self.ori_shape = [100] self.expand_times = [2, 1] self.expand_shape = [2, 100] def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') # Situation 4: input x is Integer class TestExpandV2OpInteger(OpTest): def setUp(self): self.op_type = "expand_v2" self.prim_op_type = "prim" self.python_api = paddle.expand self.inputs = { 'X': np.random.randint(10, size=(2, 4, 5)).astype("int32") } self.attrs = {'shape': [2, 4, 5]} output = np.tile(self.inputs['X'], (1, 1, 1)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() # Situation 5: input x is Bool class TestExpandV2OpBoolean(OpTest): def setUp(self): self.op_type = "expand_v2" self.prim_op_type = "prim" self.python_api = paddle.expand self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")} self.attrs = {'shape': [2, 4, 5]} output = np.tile(self.inputs['X'], (1, 1, 1)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() # Situation 56: input x is Integer class TestExpandV2OpInt64_t(OpTest): def setUp(self): self.op_type = "expand_v2" self.prim_op_type = "prim" self.python_api = paddle.expand self.inputs = { 'X': np.random.randint(10, size=(2, 4, 5)).astype("int64") } self.attrs = {'shape': [2, 4, 5]} output = np.tile(self.inputs['X'], (1, 1, 1)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() class TestExpandV2Error(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace() ) shape = [2, 2] self.assertRaises(TypeError, paddle.tensor.expand, x1, shape) x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8") self.assertRaises(TypeError, paddle.tensor.expand, x2, shape) x3 = paddle.static.data(name='x3', shape=[-1, 4], dtype="bool") x3.stop_gradient = False self.assertRaises(ValueError, paddle.tensor.expand, x3, shape) # Test python API class TestExpandV2API(unittest.TestCase): def test_api(self): input = np.random.random([12, 14]).astype("float32") x = paddle.static.data(name='x', shape=[12, 14], dtype="float32") positive_2 = fluid.layers.fill_constant([1], "int32", 12) expand_shape = paddle.static.data( name="expand_shape", shape=[2], dtype="int32", ) out_1 = paddle.expand(x, shape=[12, 14]) out_2 = paddle.expand(x, shape=[positive_2, 14]) out_3 = paddle.expand(x, shape=expand_shape) g0 = fluid.backward.calc_gradient(out_2, x) exe = fluid.Executor(place=fluid.CPUPlace()) res_1, res_2, res_3 = exe.run( fluid.default_main_program(), feed={ "x": input, "expand_shape": np.array([12, 14]).astype("int32"), }, fetch_list=[out_1, out_2, out_3], ) assert np.array_equal(res_1, np.tile(input, (1, 1))) assert np.array_equal(res_2, np.tile(input, (1, 1))) assert np.array_equal(res_3, np.tile(input, (1, 1))) class TestExpandInferShape(unittest.TestCase): def test_shape_with_var(self): with program_guard(Program(), Program()): x = paddle.static.data(shape=[-1, 1, 3], name='x') fake_var = paddle.randn([2, 3]) target_shape = [ -1, paddle.shape(fake_var)[0], paddle.shape(fake_var)[1], ] out = paddle.expand(x, shape=target_shape) self.assertListEqual(list(out.shape), [-1, -1, -1]) # Test python Dygraph API class TestExpandV2DygraphAPI(unittest.TestCase): def test_expand_times_is_tensor(self): with paddle.fluid.dygraph.guard(): paddle.seed(1) a = paddle.rand([2, 5]) expand_1 = paddle.expand(a, shape=[2, 5]) np_array = np.array([2, 5]) expand_2 = paddle.expand(a, shape=np_array) np.testing.assert_array_equal(expand_1.numpy(), expand_2.numpy()) class TestExpandDoubleGradCheck(unittest.TestCase): def expand_wrapper(self, x): return paddle.expand(x[0], [2, 3]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [2, 3], dtype) data.persistable = True out = paddle.expand(data, [2, 3]) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.expand_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestExpandTripleGradCheck(unittest.TestCase): def expand_wrapper(self, x): return paddle.expand(x[0], [2, 3]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [2, 3], dtype) data.persistable = True out = paddle.expand(data, [2, 3]) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.expand_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": paddle.enable_static() unittest.main()