# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import paddle from paddle import _legacy_C_ops, in_dynamic_mode from paddle.fluid.data_feeder import check_variable_and_dtype from paddle.fluid.framework import _create_tensor from paddle.fluid.log_helper import get_logger from paddle.framework import ParamAttr, core from paddle.nn import Layer from paddle.nn import functional as F from paddle.nn.initializer import Constant from paddle.nn.quant.lsq import FakeQuantActLSQPlus, FakeQuantWeightLSQPlus from paddle.utils import unique_name __all__ = [ 'FakeQuantAbsMax', 'FakeQuantMovingAverageAbsMax', 'FakeQuantChannelWiseAbsMax', 'QuantizedConv2D', 'QuantizedConv2DTranspose', 'QuantizedLinear', 'MovingAverageAbsMaxScale', 'MAOutputScaleLayer', 'FakeQuantMAOutputScaleLayer', 'QuantStub', 'QuantizedRowParallelLinear', 'QuantizedColumnParallelLinear', 'QuantizedMatmul', ] _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s' ) class FakeQuantAbsMax(Layer): r""" FakeQuantAbsMax layer does the abs_max quant and then dequant. Its computational formula is described as below: :math:`scale = max(abs(X))` :math:`range = 2^{bit\_length - 1} - 1` :math:`Out = round(X / scale * range) * scale / range` """ def __init__( self, name=None, quant_bits=8, dtype='float32', quant_on_weight=False, reduce_type=None, ): super().__init__() self._quant_bits = quant_bits self._name = name self._reduce_type = reduce_type scale_prefix = f"{name}.scale" if name else 'quant_dequant.scale' self._scale_name = unique_name.generate(scale_prefix) if quant_on_weight: scale_attr = ParamAttr( name=self._scale_name, initializer=Constant(0.001), trainable=False, ) self._scale = self.create_parameter( shape=[1], attr=scale_attr, dtype=self._dtype ) self._scale.stop_gradient = True else: self._scale = None def forward(self, input): if in_dynamic_mode(): attrs = ('bit_length', self._quant_bits) quant_out = _create_tensor( type=input.type, name=f"{input.name}.quantized.dequantized", shape=input.shape, dtype=input.dtype, persistable=False, ) out_scale = self._scale if self._reduce_type == "max": paddle.distributed.all_reduce( out_scale, op=paddle.distributed.ReduceOp.MAX ) if not out_scale: out_scale = _create_tensor( type=core.VarDesc.VarType.LOD_TENSOR, name=self._scale_name, shape=[1], dtype=self._dtype, persistable=False, ) out_scale.stop_gradient = True ( out, _, ) = _legacy_C_ops.fake_quantize_dequantize_abs_max( input, quant_out, out_scale, *attrs ) return out check_variable_and_dtype(input, 'input', ['float32'], "FakeQuantAbsMax") attrs = {'bit_length': self._quant_bits} inputs = {"X": [input]} quant_out = self._helper.create_variable( name=f"{input.name}.quantized.dequantized", dtype=input.dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=False, ) out_scale = self._scale if not out_scale: out_scale = self._helper.create_variable( name=self._scale_name, dtype=self._dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=True, ) outputs = {"Out": [quant_out], "OutScale": [out_scale]} self._helper.append_op( type="fake_quantize_dequantize_abs_max", inputs=inputs, outputs=outputs, attrs=attrs, ) return quant_out class FakeQuantMovingAverageAbsMax(Layer): r""" FakeQuantMovingAverageAbsMax layer does the moving_average_abs_max quant and then dequant. Its computational formula is described as below: :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)` :math:`range = 2^{bit\_length - 1} - 1` :math:`Out = round(X / scale * range) * scale / range` """ def __init__( self, name=None, moving_rate=0.9, quant_bits=8, dtype='float32', reduce_type=None, ): super().__init__() self._moving_rate = moving_rate self._quant_bits = quant_bits self._reduce_type = reduce_type scale_prefix = f"{name}.scale" if name else 'quant_dequant.scale' scale_attr = ParamAttr( name=unique_name.generate(scale_prefix), initializer=Constant(0.001), trainable=False, ) self._scale = self.create_parameter( shape=[1], attr=scale_attr, dtype=dtype ) self._scale.stop_gradient = True state_prefix = f"{name}.state" if name else 'quant_dequant.state' state_attr = ParamAttr( name=unique_name.generate(state_prefix), initializer=Constant(1), trainable=False, ) self._state = self.create_parameter( shape=[1], attr=state_attr, dtype=dtype ) self._state.stop_gradient = True accum_prefix = f"{name}.accum" if name else 'quant_dequant.accum' accum_attr = ParamAttr( name=unique_name.generate(accum_prefix), initializer=Constant(1), trainable=False, ) self._accum = self.create_parameter( shape=[1], attr=accum_attr, dtype=dtype ) self._accum.stop_gradient = True def forward(self, input): if in_dynamic_mode(): attrs = ( 'moving_rate', self._moving_rate, 'bit_length', self._quant_bits, 'is_test', not self.training, ) quant_out = _create_tensor( type=input.type, name=f"{input.name}.quantized.dequantized", shape=input.shape, dtype=input.dtype, persistable=False, ) if self._reduce_type == "max": paddle.distributed.all_reduce( self._scale, op=paddle.distributed.ReduceOp.MAX ) state = self._state if self.training else None accum = self._accum if self.training else None ( out, _, _, _, ) = _legacy_C_ops.fake_quantize_dequantize_moving_average_abs_max( input, self._scale, accum, state, quant_out, self._scale, state, accum, *attrs, ) return out check_variable_and_dtype( input, 'input', ['float32'], "FakeQuantMovingAverageAbsMax" ) attrs = { 'moving_rate': self._moving_rate, 'bit_length': self._quant_bits, 'is_test': not self.training, } inputs = {"X": [input], "InScale": [self._scale]} quant_out = self._helper.create_variable( name=f"{input.name}.quantized.dequantized", dtype=input.dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=False, ) outputs = {"Out": [quant_out], "OutScale": [self._scale]} if self.training: inputs['InState'] = [self._state] inputs['InAccum'] = [self._accum] outputs['OutState'] = [self._state] outputs['OutAccum'] = [self._accum] self._helper.append_op( type="fake_quantize_dequantize_moving_average_abs_max", inputs=inputs, outputs=outputs, attrs=attrs, ) return quant_out class FakeQuantChannelWiseAbsMax(Layer): def __init__( self, name=None, channel_num=None, quant_bits=8, quant_axis=0, dtype='float32', quant_on_weight=False, reduce_type=None, ): assert ( quant_on_weight ), "Channel_wise only can be used on weight quantization." super().__init__() self._quant_bits = quant_bits self._quant_axis = quant_axis self._dtype = dtype self._name = name self._channel_num = channel_num self._reduce_type = reduce_type scale_prefix = f"{name}.scale" if name else 'quant_dequant.scale' self._scale_name = unique_name.generate(scale_prefix) if quant_on_weight: scale_attr = ParamAttr( name=self._scale_name, initializer=Constant(0.0), trainable=False, ) self._scale = self.create_parameter( shape=[self._channel_num], attr=scale_attr, dtype=self._dtype ) self._scale.stop_gradient = True else: self._scale = None def forward(self, input): if in_dynamic_mode(): attrs = ( 'bit_length', self._quant_bits, 'quant_axis', self._quant_axis, ) quant_out = _create_tensor( type=input.type, name=f"{input.name}.quantized.dequantized", shape=input.shape, dtype=input.dtype, persistable=False, ) out_scale = self._scale if self._reduce_type == "max": paddle.distributed.all_reduce( out_scale, op=paddle.distributed.ReduceOp.MAX ) if out_scale is None: out_scale = _create_tensor( type=core.VarDesc.VarType.LOD_TENSOR, name=self._scale_name, shape=[self._channel_num], dtype=self._dtype, persistable=False, ) out_scale.stop_gradient = True ( out, _, ) = _legacy_C_ops.fake_channel_wise_quantize_dequantize_abs_max( input, quant_out, out_scale, *attrs ) return out check_variable_and_dtype( input, 'input', ['float32'], "FakeQuantChannelWiseAbsMax" ) attrs = {'bit_length': self._quant_bits, 'quant_axis': self._quant_axis} inputs = {"X": [input]} quant_out = self._helper.create_variable( name=f"{input.name}.quantized.dequantized", dtype=input.dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=False, ) out_scale = self._scale if not out_scale: out_scale = self._helper.create_variable( name=self._scale_name, dtype=self._dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=True, ) outputs = {"Out": [quant_out], "OutScale": [out_scale]} self._helper.append_op( type="fake_channel_wise_quantize_dequantize_abs_max", inputs=inputs, outputs=outputs, attrs=attrs, ) return quant_out class MovingAverageAbsMaxScale(Layer): def __init__( self, name=None, moving_rate=0.9, dtype='float32', reduce_type=None ): r""" MovingAverageMaxScale layer is used to calculating the output quantization scale of Layer. Its computational formula is described as below: :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)` :math:`Out = X` """ super().__init__() self._moving_rate = moving_rate self._reduce_type = reduce_type scale_prefix = f'{name}.scale' if name else 'outscale.scale' scale_name = unique_name.generate(scale_prefix) scale_attr = ParamAttr( name=scale_name, initializer=Constant(0), trainable=False ) self._scale = self.create_parameter( shape=[1], attr=scale_attr, dtype=dtype ) self._scale.stop_gradient = True state_prefix = f"{name}.state" if name else 'outscale.state' state_attr = ParamAttr( name=unique_name.generate(state_prefix), initializer=Constant(0), trainable=False, ) self._state = self.create_parameter( shape=[1], attr=state_attr, dtype=dtype ) self._state.stop_gradient = True accum_prefix = f"{name}.accum" if name else 'outscale.accum' accum_attr = ParamAttr( name=unique_name.generate(accum_prefix), initializer=Constant(0), trainable=False, ) self._accum = self.create_parameter( shape=[1], attr=accum_attr, dtype=dtype ) self._accum.stop_gradient = True def forward(self, input): if in_dynamic_mode(): attrs = ( 'moving_rate', self._moving_rate, 'is_test', not self.training, ) quant_out = _create_tensor( type=input.type, name=f"{input.name}.tmp", shape=input.shape, dtype=input.dtype, persistable=False, ) if self._reduce_type == "max": paddle.distributed.all_reduce( self._scale, op=paddle.distributed.ReduceOp.MAX ) state = self._state if self.training else None accum = self._accum if self.training else None out, _, _, _ = _legacy_C_ops.moving_average_abs_max_scale( input, accum, state, quant_out, self._scale, state, accum, *attrs, ) return out check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'MovingAverageAbsMaxScale' ) attrs = {'moving_rate': self._moving_rate, 'is_test': not self.training} inputs = {"X": [input]} quant_out = self._helper.create_variable( name=f"{input.name}.tmp", dtype=input.dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=False, ) outputs = {"Out": [quant_out], "OutScale": [self._scale]} if self.training: inputs['InState'] = [self._state] inputs['InAccum'] = [self._accum] outputs['OutState'] = [self._state] outputs['OutAccum'] = [self._accum] self._helper.append_op( type="moving_average_abs_max_scale", inputs=inputs, outputs=outputs, attrs=attrs, ) return quant_out QuantStub = MovingAverageAbsMaxScale class QuantizedConv2D(Layer): """ The computational logic of QuantizedConv2D is the same with Conv2D. The only difference is that its inputs are all fake quantized. """ def __init__( self, layer, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None, ): super().__init__() # For Conv2D self._groups = layer._groups self._stride = layer._stride self._padding = layer._padding self._padding_mode = layer._padding_mode if self._padding_mode != 'zeros': self._reversed_padding_repeated_twice = ( layer._reversed_padding_repeated_twice ) self._dilation = layer._dilation self._data_format = layer._data_format self.weight = layer.weight self.bias = layer.bias # For FakeQuant self._conv2d_quant_axis = 0 if weight_quant_layer is not None: self._fake_quant_weight = weight_quant_layer() else: self._fake_quant_weight = _get_fake_quant_type( weight_quantize_type, name=self.weight.name, moving_rate=moving_rate, quant_bits=weight_bits, dtype=self._dtype, quant_on_weight=True, channel_num=self.weight.shape[self._conv2d_quant_axis], quant_axis=self._conv2d_quant_axis, ) if act_quant_layer is not None: self._fake_quant_input = act_quant_layer() else: self._fake_quant_input = _get_fake_quant_type( activation_quantize_type, name=layer.full_name(), moving_rate=moving_rate, quant_bits=activation_bits, dtype=self._dtype, quant_on_weight=False, ) self._act_preprocess = ( act_pre_layer() if act_pre_layer is not None else None ) self._weight_preprocess = ( weight_pre_layer() if weight_pre_layer is not None else None ) def forward(self, input): if self._act_preprocess is not None: input = self._act_preprocess(input) quant_input = self._fake_quant_input(input) weight = self.weight if self._weight_preprocess is not None: weight = self._weight_preprocess(self.weight) quant_weight = self._fake_quant_weight(weight) if self._padding_mode != 'zeros': quant_input = F.pad( quant_input, self._reversed_padding_repeated_twice, mode=self._padding_mode, data_format=self._data_format, ) self._padding = 0 return F.conv2d( quant_input, quant_weight, bias=self.bias, padding=self._padding, stride=self._stride, dilation=self._dilation, groups=self._groups, data_format=self._data_format, ) class QuantizedConv2DTranspose(Layer): """ The computational logic of QuantizedConv2DTranspose is the same with Conv2DTranspose. The only difference is that its inputs are all fake quantized. Examples: .. code-block:: python >>> import paddle >>> import paddle.nn as nn >>> from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose >>> x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.) >>> conv = nn.Conv2DTranspose(4, 6, (3, 3)) >>> conv_quantized = QuantizedConv2DTranspose(conv) >>> y_quantized = conv_quantized(x_var) >>> y_var = conv(x_var) >>> print(y_var.shape) [2, 6, 10, 10] >>> print(y_quantized.shape) [2, 6, 10, 10] """ def __init__( self, layer, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None, ): r""" Constructor. The arguments are the same as ImperativeQuantAware. """ super().__init__() # For Conv2DTranspose self._groups = layer._groups self._stride = layer._stride self._padding = layer._padding self._output_padding = layer.output_padding self._dilation = layer._dilation self._data_format = layer._data_format self.weight = layer.weight self.bias = layer.bias # For FakeQuant self._conv2d_transpose_quant_axis = 1 if weight_quant_layer is not None: self._fake_quant_weight = weight_quant_layer() else: self._fake_quant_weight = _get_fake_quant_type( weight_quantize_type, name=self.weight.name, moving_rate=moving_rate, quant_bits=weight_bits, dtype=self._dtype, quant_on_weight=True, channel_num=self.weight.shape[ self._conv2d_transpose_quant_axis ], quant_axis=self._conv2d_transpose_quant_axis, ) if act_quant_layer is not None: self._fake_quant_input = act_quant_layer() else: self._fake_quant_input = _get_fake_quant_type( activation_quantize_type, name=layer.full_name(), moving_rate=moving_rate, quant_bits=activation_bits, dtype=self._dtype, quant_on_weight=False, ) self._act_preprocess = ( act_pre_layer() if act_pre_layer is not None else None ) self._weight_preprocess = ( weight_pre_layer() if weight_pre_layer is not None else None ) def forward(self, input, output_size=None): if self._act_preprocess is not None: input = self._act_preprocess(input) quant_input = self._fake_quant_input(input) weight = self.weight if self._weight_preprocess is not None: weight = self._weight_preprocess(self.weight) quant_weight = self._fake_quant_weight(weight) if output_size is None: output_padding = self._output_padding else: output_padding = 0 return F.conv2d_transpose( quant_input, quant_weight, bias=self.bias, padding=self._padding, output_padding=output_padding, stride=self._stride, dilation=self._dilation, groups=self._groups, output_size=output_size, data_format=self._data_format, ) class QuantizedLinear(Layer): """ The computational logic of QuantizedLinear is the same with Linear. The only difference is that its inputs are all fake quantized. """ def __init__( self, layer, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None, ): super().__init__() # For Linear self.weight = layer.weight self.bias = layer.bias self.name = layer.name # For FakeQuant self._linear_quant_axis = 1 if weight_quant_layer is not None: self._fake_quant_weight = weight_quant_layer() else: self._fake_quant_weight = _get_fake_quant_type( weight_quantize_type, name=self.weight.name, moving_rate=moving_rate, quant_bits=weight_bits, dtype=self._dtype, quant_on_weight=True, channel_num=self.weight.shape[self._linear_quant_axis], quant_axis=self._linear_quant_axis, quant_linear=True, ) if act_quant_layer is not None: self._fake_quant_input = act_quant_layer() else: self._fake_quant_input = _get_fake_quant_type( activation_quantize_type, name=layer.full_name(), moving_rate=moving_rate, quant_bits=activation_bits, dtype=self._dtype, quant_on_weight=False, ) self._act_preprocess = ( act_pre_layer() if act_pre_layer is not None else None ) self._weight_preprocess = ( weight_pre_layer() if weight_pre_layer is not None else None ) def forward(self, input): if self._act_preprocess is not None: input = self._act_preprocess(input) quant_input = self._fake_quant_input(input) weight = self.weight if self._weight_preprocess is not None: weight = self._weight_preprocess(self.weight) quant_weight = self._fake_quant_weight(weight) out = F.linear( x=quant_input, weight=quant_weight, bias=self.bias, name=self.name ) return out class QuantizedColumnParallelLinear(Layer): def __init__( self, layer, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None, ): super().__init__() ''' ''' assert ( weight_quant_layer is None ), "When quantizing ColumnParallelLinear, weight_quant_layer should be None." assert ( act_quant_layer is None ), "When quantizing ColumnParallelLinear, act_quant_layer should be None." self.weight = layer.weight self.bias = layer.bias self.name = layer._name # For FakeQuant self._linear_quant_axis = 1 self.is_mp = layer.is_mp self.model_parallel_group = layer.model_parallel_group self.gather_output = layer.gather_output self._fake_quant_weight = _get_fake_quant_type( weight_quantize_type, name=self.weight.name, moving_rate=moving_rate, quant_bits=weight_bits, dtype=self._dtype, quant_on_weight=True, channel_num=self.weight.shape[self._linear_quant_axis], quant_axis=self._linear_quant_axis, reduce_type='max' if paddle.distributed.get_world_size() > 1 else None, ) self._fake_quant_input = _get_fake_quant_type( activation_quantize_type, name=layer.full_name(), moving_rate=moving_rate, quant_bits=activation_bits, dtype=self._dtype, quant_on_weight=False, reduce_type=None, ) self._act_preprocess = ( act_pre_layer() if act_pre_layer is not None else None ) self._weight_preprocess = ( weight_pre_layer() if weight_pre_layer is not None else None ) def forward(self, input): if self.is_mp: input_parallel = paddle.distributed.collective._c_identity( input, group=self.model_parallel_group ) else: input_parallel = input if self._act_preprocess is not None: input_parallel = self._act_preprocess(input_parallel) quant_input = self._fake_quant_input(input_parallel) weight = self.weight if self._weight_preprocess is not None: weight = self._weight_preprocess(self.weight) quant_weight = self._fake_quant_weight(weight) output_parallel = F.linear( x=quant_input, weight=quant_weight, bias=self.bias, name=self.name ) if self.gather_output and self.is_mp: output = paddle.distributed.collective._c_concat( output_parallel, group=self.model_parallel_group ) else: output = output_parallel return output class QuantizedRowParallelLinear(Layer): def __init__( self, layer, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None, ): super().__init__() assert ( weight_quant_layer is None ), "When quantizing RowParallelLinear, weight_quant_layer cannot defined by yourself." assert ( act_quant_layer is None ), "When quantizing RowParallelLinear, act_quant_layer cannot defined by yourself." # For Linear self.weight = layer.weight self.bias = layer.bias self.name = layer._name # For FakeQuant self._linear_quant_axis = 1 self.input_is_parallel = layer.input_is_parallel self.is_mp = layer.is_mp self.model_parallel_group = layer.model_parallel_group self._fake_quant_weight = _get_fake_quant_type( weight_quantize_type, name=self.weight.name, moving_rate=moving_rate, quant_bits=weight_bits, dtype=self._dtype, quant_on_weight=True, channel_num=self.weight.shape[self._linear_quant_axis], quant_axis=self._linear_quant_axis, reduce_type='max' if paddle.distributed.get_world_size() > 1 else None, ) self._fake_quant_input = _get_fake_quant_type( activation_quantize_type, name=layer.full_name(), moving_rate=moving_rate, quant_bits=activation_bits, dtype=self._dtype, quant_on_weight=False, reduce_type='max' if paddle.distributed.get_world_size() > 1 else None, ) self._act_preprocess = ( act_pre_layer() if act_pre_layer is not None else None ) self._weight_preprocess = ( weight_pre_layer() if weight_pre_layer is not None else None ) def forward(self, input): if self.input_is_parallel or (not self.is_mp): input_parallel = input else: # split last dim input_parallel = paddle.distributed.collective._c_split( input, group=self.model_parallel_group ) if self._act_preprocess is not None: input_parallel = self._act_preprocess(input_parallel) quant_input = self._fake_quant_input(input_parallel) weight = self.weight if self._weight_preprocess is not None: weight = self._weight_preprocess(self.weight) quant_weight = self._fake_quant_weight(weight) output_parallel = F.linear( x=quant_input, weight=quant_weight, name=self.name ) if self.is_mp: output_ = paddle.distributed.collective._mp_allreduce( output_parallel, group=self.model_parallel_group, use_calc_stream=True, use_model_parallel=True, ) else: output_ = output_parallel output = output_ + self.bias if self.bias is not None else output_ return output class QuantizedMatmul(Layer): """ The computational logic of QuantizedMatmul is the same with Matmul. The only difference is that its inputs are all fake quantized. """ def __init__( self, layer=None, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None, ): super().__init__() # For FakeQuant if act_quant_layer is not None: self._fake_quant_x = act_quant_layer() self._fake_quant_y = act_quant_layer() else: self._fake_quant_x = _get_fake_quant_type( activation_quantize_type, moving_rate=moving_rate, quant_bits=activation_bits, quant_on_weight=False, ) self._fake_quant_y = _get_fake_quant_type( activation_quantize_type, moving_rate=moving_rate, quant_bits=activation_bits, quant_on_weight=False, ) self._act_preprocess_x = ( act_pre_layer() if act_pre_layer is not None else None ) self._act_preprocess_y = ( act_pre_layer() if act_pre_layer is not None else None ) def forward(self, x, y, transpose_x=False, transpose_y=False, name=None): if self._act_preprocess_x is not None: x = self._act_preprocess_x(x) quant_x = self._fake_quant_x(x) if self._act_preprocess_y is not None: y = self._act_preprocess_y(y) quant_y = self._fake_quant_y(y) out = paddle.matmul(quant_x, quant_y, transpose_x, transpose_y, name) return out class MAOutputScaleLayer(Layer): """ Add MovingAverageMaxScale layer to the behind of the input layer. Calculate the scale (moving average abs max) for the output of the input layer. """ def __init__( self, layer=None, moving_rate=0.9, name=None, dtype='float32', reduce_type=None, ): r""" Construct """ super().__init__() self._layer = layer if name is None: name = layer.full_name() self._ma_output_scale = MovingAverageAbsMaxScale( name, moving_rate, dtype, reduce_type ) def forward(self, *inputs, **kwargs): out = self._layer(*inputs, **kwargs) # TODO (jc): support the ops of several outputs if isinstance(out, (list, tuple, dict)): return out else: return self._ma_output_scale(out) class FakeQuantMAOutputScaleLayer(Layer): """ Add FakeQuantMovingAverageAbsMax layer to the behind of the input layer. """ def __init__( self, layer, weight_bits=8, activation_bits=8, moving_rate=0.9, name=None, reduce_type=None, *args, **kwargs, ): super().__init__() self._layer = layer self._fake_quant_output = _get_fake_quant_type( 'moving_average_abs_max', name=layer.full_name() if name is None else name, moving_rate=moving_rate, quant_bits=activation_bits, dtype=self._dtype, quant_on_weight=False, reduce_type=reduce_type, ) def forward(self, *inputs, **kwargs): out = self._layer(*inputs, **kwargs) # TODO (jc): support the ops of several outputs if (isinstance(out, (list, tuple))) and len(out) > 1: return out else: return self._fake_quant_output(out) def _get_fake_quant_type(quant_type, **kwargs): call_args = { "name": kwargs.get("name", None), "quant_bits": kwargs.get("quant_bits", 8), "dtype": kwargs.get("dtype", "float32"), "reduce_type": kwargs.get("reduce_type", None), } if quant_type == 'abs_max': call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False) elif quant_type == 'moving_average_abs_max': call_args["moving_rate"] = kwargs.get("moving_rate", 0.9) elif quant_type == 'channel_wise_abs_max': call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False) call_args["channel_num"] = kwargs.get("channel_num", None) call_args["quant_axis"] = kwargs.get("quant_axis", 0) assert call_args["channel_num"] is not None, ( "You need to input channel_num" "when you use channel_wise_abs_max strategy." ) elif quant_type == 'lsq_weight': call_args["all_postive"] = kwargs.get("all_postive", False) call_args["per_channel"] = False call_args["channel_num"] = 1 call_args["quant_linear"] = kwargs.get("quant_linear", False) elif quant_type == 'channel_wise_lsq_weight': quant_type = 'lsq_weight' call_args["all_postive"] = kwargs.get("all_postive", False) call_args["per_channel"] = True call_args["channel_num"] = kwargs.get("channel_num", None) call_args["quant_linear"] = kwargs.get("quant_linear", False) assert call_args["channel_num"] is not None, ( "You need to input channel_num" "when you use channel_wise_abs_max strategy." ) elif quant_type == 'lsq_act': call_args["all_postive"] = kwargs.get("all_postive", False) call_args["symmetric"] = kwargs.get("symmetric", True) fake_quant_map = { 'abs_max': FakeQuantAbsMax, 'moving_average_abs_max': FakeQuantMovingAverageAbsMax, 'channel_wise_abs_max': FakeQuantChannelWiseAbsMax, 'lsq_weight': FakeQuantWeightLSQPlus, 'lsq_act': FakeQuantActLSQPlus, } return fake_quant_map[quant_type](**call_args)