// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "paddle_infer_declare.h" // NOLINT /// /// \file paddle_pass_builder.h /// /// \brief Class Paddle Passs Builder and its subclasses(pass strategies). /// \section sec_intro Introduction /// This class aims to build passes for paddle and define passes' strategies. /// /// \author paddle-infer@baidu.com /// \date 2020-3-23 /// \since 1.7 /// \namespace paddle namespace paddle { /// \class PaddlePassBuilder /// \brief This class build passes based on vector input. It is part of /// inference API. Users can build passes, insert new passes, delete passes /// using this class and its functions. /// /// Example Usage: /// Build a new pass. /// \code{cpp} /// const vector passes(1, "conv_relu_mkldnn_fuse_pass"); /// PaddlePassBuilder builder(passes); /// \endcode class PD_INFER_DECL PaddlePassBuilder { public: /// \brief Constructor of the class. It stores the input passes. /// \param[in] passes passes' types. explicit PaddlePassBuilder(const std::vector &passes) : passes_(passes) {} /// \brief Stores the input passes. /// \param[in] passes passes' types. void SetPasses(std::initializer_list passes) { passes_ = passes; } /// \brief Append a pass to the end of the passes. /// \param[in] pass_type the type of the new pass. void AppendPass(const std::string &pass_type); /// \brief Insert a pass to a specific position. /// \param[in] idx the position to insert. /// \param[in] pass_type the type of insert pass. void InsertPass(size_t idx, const std::string &pass_type); /// \brief Delete the pass at certain position 'idx'. /// \param[in] idx the position to delete. void DeletePass(size_t idx); /// \brief Delete all passes that has a certain type 'pass_type'. /// \param[in] pass_type the certain pass type to be deleted. void DeletePass(const std::string &pass_type); /// \brief Delete all the passes. void ClearPasses(); /// \brief Append an analysis pass. /// \param[in] pass the type of the new analysis pass. void AppendAnalysisPass(const std::string &pass); /// \brief Visualize the computation graph after each pass by generating a DOT /// language file, one can draw them with the Graphviz toolkit. void TurnOnDebug(); /// \brief Human-readable information of the passes. std::string DebugString(); /// \brief Get information of passes. /// \return Return list of the passes. const std::vector &AllPasses() const { return passes_; } /// \brief Get information of analysis passes. /// \return Return list of analysis passes. std::vector AnalysisPasses() const { auto passes = analysis_passes_; // To make sure the ir_graph_to_program should be the last pass so any // modication of IR will persist to the program. passes.push_back("ir_graph_to_program_pass"); return passes; } protected: /// \cond Protected std::vector analysis_passes_{ {"ir_graph_build_pass", "ir_graph_clean_pass", "ir_analysis_pass", "ir_params_sync_among_devices_pass", "adjust_cudnn_workspace_size_pass", "inference_op_replace_pass"}}; std::vector passes_; /// \endcond }; /// \class PassStrategy /// \brief This class defines the pass strategies like whether to use gpu/cuDNN /// kernel/MKLDNN. class PD_INFER_DECL PassStrategy : public PaddlePassBuilder { public: /// \brief Constructor of PassStrategy class. It works the same as /// PaddlePassBuilder class. \param[in] passes passes' types. explicit PassStrategy(const std::vector &passes) : PaddlePassBuilder(passes) {} /// \brief Enable the use of cuDNN kernel. virtual void EnableCUDNN() {} /// \brief Enable the use of MKLDNN. /// The MKLDNN control exists in both CPU and GPU mode, because there can /// still be some CPU kernels running in GPU mode. virtual void EnableMKLDNN() {} /// \brief Enable MKLDNN quantize optimization. virtual void EnableMkldnnQuantizer() {} /// \brief Enable MKLDNN bfloat16. virtual void EnableMkldnnBfloat16() {} /// \brief Check if we are using gpu. /// \return A bool variable implying whether we are in gpu mode. bool use_gpu() const { return use_gpu_; } /// \brief Check if we are using xpu. /// \return A bool variable implying whether we are in xpu mode. bool use_xpu() const { return use_xpu_; } /// \brief Default destructor. virtual ~PassStrategy() = default; protected: /// \cond Protected bool use_xpu_{false}; bool use_gpu_{false}; bool use_mkldnn_{false}; /// \endcond }; /// \class CpuPassStrategy /// \brief The CPU passes controller, it is used in AnalysisPredictor with CPU /// mode. class PD_INFER_DECL CpuPassStrategy : public PassStrategy { public: /// \brief Default constructor of CpuPassStrategy. CpuPassStrategy(); /// \brief Construct by copying another CpuPassStrategy object. /// \param[in] other The CpuPassStrategy object we want to copy. explicit CpuPassStrategy(const CpuPassStrategy &other) : PassStrategy(other.AllPasses()) { use_gpu_ = other.use_gpu_; use_mkldnn_ = other.use_mkldnn_; use_mkldnn_quantizer_ = other.use_mkldnn_quantizer_; use_mkldnn_bfloat16_ = other.use_mkldnn_bfloat16_; } /// \brief Default destructor. virtual ~CpuPassStrategy() = default; /// \brief Enable the use of cuDNN kernel. void EnableCUDNN() override; /// \brief Enable the use of MKLDNN. void EnableMKLDNN() override; /// \brief Enable MKLDNN quantize optimization. void EnableMkldnnQuantizer() override; /// \brief Enable MKLDNN bfloat16. void EnableMkldnnBfloat16() override; protected: /// \cond Protected bool use_mkldnn_quantizer_{false}; bool use_mkldnn_bfloat16_{false}; /// \endcond }; /// \class GpuPassStrategy /// \brief The GPU passes controller, it is used in AnalysisPredictor with GPU /// mode. class PD_INFER_DECL GpuPassStrategy : public PassStrategy { public: /// \brief Default constructor of GpuPassStrategy. GpuPassStrategy(); /// \brief Construct by copying another GpuPassStrategy object. /// \param[in] other The GpuPassStrategy object we want to copy. explicit GpuPassStrategy(const GpuPassStrategy &other) : PassStrategy(other.AllPasses()) { use_gpu_ = true; use_cudnn_ = other.use_cudnn_; } /// \brief Enable the use of cuDNN kernel. void EnableCUDNN() override; /// \brief Not supported in GPU mode yet. void EnableMKLDNN() override; /// \brief Not supported in GPU mode yet. void EnableMkldnnQuantizer() override; /// \brief Not supported in GPU mode yet. void EnableMkldnnBfloat16() override; /// \brief Default destructor. virtual ~GpuPassStrategy() = default; protected: /// \cond Protected bool use_cudnn_{false}; /// \endcond }; /// \class XpuPassStrategy /// \brief The XPU passes controller, it is used in AnalysisPredictor with XPU /// mode. class PD_INFER_DECL XpuPassStrategy final : public PassStrategy { public: XpuPassStrategy() : PassStrategy({}) {} }; /// \brief List of tensorRT subgraph passes. PD_INFER_DECL extern const std::vector kTRTSubgraphPasses; /// \brief List of dlnne subgraph passes. PD_INFER_DECL extern const std::vector kDlnneSubgraphPasses; /// \brief List of lite subgraph passes. PD_INFER_DECL extern const std::vector kLiteSubgraphPasses; } // namespace paddle