# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle import enable_static from paddle.fluid import core from paddle.fluid.framework import _current_expected_place from paddle.fluid.tests.unittests.eager_op_test import ( OpTest, OpTestTool, convert_float_to_uint16, ) @OpTestTool.skip_if( not (isinstance(_current_expected_place(), core.CPUPlace)), "GPU is not supported", ) class TestOneDNNElementwiseSubOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.out} def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.subtract(self.x, self.y) def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ignore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ignore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) def init_axis(self): self.axis = -1 def init_kernel_type(self): self.use_mkldnn = True def init_dtype(self): self.dtype = np.float32 def test_check_output(self): self.check_output() class TestOneDNNElementwiseSubOp2(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.subtract(self.x, self.y) class TestOneDNNElementwiseSubOp3(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) self.out = np.subtract(self.x, self.y) class TestOneDNNElementwiseSubOp4(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype) self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype) self.out = np.subtract(self.x, self.y) class TestOneDNNElementwiseSubOp5(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) self.out = np.subtract(self.x, self.y) class TestOneDNNElementwiseSubOp6(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.uniform(0.1, 2, [180, 1]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [1, 256]).astype(self.dtype) self.out = np.subtract(self.x, self.y) class TestOneDNNElementwiseSubOp7(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.uniform(0.1, 2, [1, 180]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [256, 1]).astype(self.dtype) self.out = np.subtract(self.x, self.y) class TestOneDNNElementwiseSubOp_broadcast(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x - self.y.reshape(1, 10, 12, 1) def init_axis(self): self.axis = 1 class TestElementwiseSubOp_xsize_lessthan_ysize_sub(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.rand(10, 12).astype(self.dtype) self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype) self.out = self.x - self.y def init_axis(self): self.axis = 2 class TestOneDNNElementwiseSubOpZeroDim(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.array(3.0).astype(self.dtype) self.out = np.subtract(self.x, self.y) def test_check_grad_normal(self): pass def test_check_grad_ignore_x(self): pass def test_check_grad_ignore_y(self): pass class TestOneDNNElementwiseSubOpZeroDim2(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.array(3.0).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.subtract(self.x, self.y) def test_check_grad_normal(self): pass def test_check_grad_ignore_x(self): pass def test_check_grad_ignore_y(self): pass class TestOneDNNElementwiseSubOpZeroDim3(TestOneDNNElementwiseSubOp): def init_input_output(self): self.x = np.array(3.0).astype(self.dtype) self.y = np.array(3.0).astype(self.dtype) self.out = np.subtract(self.x, self.y) def test_check_grad_normal(self): pass def test_check_grad_ignore_x(self): pass def test_check_grad_ignore_y(self): pass @OpTestTool.skip_if_not_cpu_bf16() class TestBf16(TestOneDNNElementwiseSubOp): def setUp(self): self.op_type = "elementwise_sub" self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.x_bf16 = convert_float_to_uint16(self.x) self.y_bf16 = convert_float_to_uint16(self.y) self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16} self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': convert_float_to_uint16(self.out)} def init_dtype(self): self.dtype = np.float32 self.mkldnn_data_type = "bfloat16" def init_input_output(self): self.x = np.random.random( 100, ).astype(self.dtype) self.y = np.random.random( 100, ).astype(self.dtype) self.out = np.subtract(self.x, self.y) def test_check_output(self): self.check_output_with_place(core.CPUPlace()) def test_check_grad_normal(self): self.check_grad_with_place( core.CPUPlace(), ["X", "Y"], "Out", user_defined_grads=[self.x, -self.x], user_defined_grad_outputs=[self.x_bf16], ) def test_check_grad_ignore_x(self): self.check_grad_with_place( core.CPUPlace(), ["Y"], "Out", user_defined_grads=[-self.y], user_defined_grad_outputs=[self.y_bf16], ) def test_check_grad_ignore_y(self): self.check_grad_with_place( core.CPUPlace(), ["X"], "Out", user_defined_grads=[self.x], user_defined_grad_outputs=[self.x_bf16], ) class TestBf16Broadcasting(TestBf16): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) self.out = np.subtract(self.x, self.y) def compute_reduced_gradients(self, out_grads): part_sum = np.add.reduceat(out_grads, [0], axis=0) part_sum = np.add.reduceat(part_sum, [0], axis=1) part_sum = np.add.reduceat(part_sum, [0], axis=2) return -part_sum.flatten() def test_check_grad_normal(self): self.check_grad_with_place( core.CPUPlace(), ["X", "Y"], "Out", user_defined_grads=[self.x, self.compute_reduced_gradients(self.x)], user_defined_grad_outputs=[self.x_bf16], ) def test_check_grad_ignore_x(self): self.check_grad_with_place( core.CPUPlace(), ["Y"], "Out", user_defined_grads=[self.compute_reduced_gradients(self.x)], user_defined_grad_outputs=[self.x_bf16], ) class TestInt8(TestOneDNNElementwiseSubOp): def init_kernel_type(self): self.use_mkldnn = True self._cpu_only = True def init_dtype(self): self.dtype = np.int8 def init_input_output(self): self.x = np.random.randint(0, 3, (12, 9)).astype("int8") self.y = np.random.randint(0, 3, (12, 9)).astype("int8") self.out = np.subtract(self.x, self.y) def init_scales(self): self.attrs['Scale_x'] = 1.0 self.attrs['Scale_y'] = 1.0 self.attrs['Scale_out'] = 1.0 def test_check_output(self): self.init_scales() self.check_output() def test_check_grad_normal(self): pass def test_check_grad_ignore_x(self): pass def test_check_grad_ignore_y(self): pass if __name__ == '__main__': enable_static() unittest.main()