/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/common/place.h" #include "paddle/phi/common/scalar.h" #include "paddle/utils/optional.h" namespace paddle { namespace experimental { // NOTE: Separate forward and backward(grad) api impl // NOTE: The api_impl in this file are arranged in alphabetic order. ////////////////// Forward api impls ////////////////////// Tensor copy_to_impl(const Tensor& x, Place place, bool blocking); std::vector split_impl(const Tensor& x, const IntArray& num_or_sections, const Scalar& axis); std::tuple momentum_impl( const Tensor& param, const Tensor& grad, const Tensor& velocity, const Tensor& learning_rate, paddle::optional master_param, float mu, bool use_nesterov, const std::string& regularization_method, float regularization_coeff, bool multi_precision, float rescale_grad); ////////////////// Backward(grad) api impls ////////////////////// std::vector add_n_grad_impl(const std::vector& x, const Tensor& out_grad); std::tuple batch_norm_impl( const Tensor& x, const Tensor& scale, const Tensor& bias, const Tensor& mean, const Tensor& variance, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu); std::vector concat_grad_impl(const std::vector& x, const Tensor& out_grad, const Scalar& axis); std::vector stack_grad_impl(const std::vector& x, const Tensor& out_grad, int axis); std::vector meshgrid_impl(const std::vector& inputs); std::vector meshgrid_grad_impl(const std::vector& inputs, const std::vector& outputs_grad); } // namespace experimental } // namespace paddle