/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include // NOLINT #include #include // NOLINT #include #include "paddle/fluid/framework/data_feed.h" #include "paddle/fluid/framework/fleet/fleet_wrapper.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/trainer_desc.pb.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/operators/reader/blocking_queue.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/port.h" #include "paddle/fluid/platform/timer.h" #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #include "paddle/fluid/platform/nccl_helper.h" #endif namespace paddle { namespace framework { #define SEC_LOG \ VLOG(3) << "[s" << section_id_ << "p" << pipeline_id_ << "t" << thread_id_ \ << "]: " class PullDenseWorker { public: virtual ~PullDenseWorker() {} virtual void Initialize(const TrainerDesc& param); int Start(); void Stop(); void SetRootScope(Scope* scope) { root_scope_ = scope; } void IncreaseThreadVersion(int thread_id, uint64_t table_id); void ResetThreadVersion(uint64_t table_id); void Wait(std::vector<::std::future>* status_vec); void PullDense(bool force_update = false); static std::shared_ptr GetInstance() { if (NULL == s_instance_) { s_instance_.reset(new paddle::framework::PullDenseWorker()); } return s_instance_; } private: PullDenseWorker() : root_scope_(NULL) {} void Run(); bool CheckUpdateParam(uint64_t table_id); private: static std::shared_ptr s_instance_; std::shared_ptr fleet_ptr_; PullDenseWorkerParameter param_; DownpourWorkerParameter dwp_param_; Scope* root_scope_; bool running_; static std::map last_versions_; static std::map current_version_; static std::mutex mutex_for_version_; static std::map> training_versions_; static std::map> dense_value_names_; std::thread t_; int thread_num_; int sleep_time_ms_; int threshold_; std::vector<::std::future> pull_dense_status_; uint32_t pull_dense_fail_times_ = 0; std::vector base_norm_param_; std::vector mean_; std::vector scale_; float squared_sum_epsilon_ = 1e-4; std::mutex mutex_for_mean_scale_; float total_batch_num_ = 0; }; // should incorporate different type of device class DeviceWorker { public: DeviceWorker() { use_cvm_ = false; } virtual ~DeviceWorker() {} virtual void Initialize(const TrainerDesc& desc) = 0; virtual void SetDeviceIndex(int tid) = 0; virtual void TrainFiles() = 0; virtual void PrintFetchVars() = 0; virtual void TrainFilesWithProfiler() = 0; virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0; // will make this zero copy in the future virtual void BindingDataFeedMemory() = 0; virtual void SetRootScope(Scope* root_scope); virtual void SetDataFeed(DataFeed* data_feed); virtual void SetNeedDump(bool need_dump_field) {} virtual void SetChannelWriter(ChannelObject* queue) {} virtual void SetPlace(const paddle::platform::Place& place) { place_ = place; } virtual void SetReaderPlace(const paddle::platform::Place& place) { device_reader_->SetPlace(place); } virtual Scope* GetThreadScope() { return thread_scope_; } protected: Scope* root_scope_ = nullptr; Scope* thread_scope_; paddle::platform::Place place_; DataFeed* device_reader_ = nullptr; int64_t batch_num_; FetchConfig fetch_config_; bool use_cvm_; }; class CPUWorkerBase : public DeviceWorker { public: CPUWorkerBase() {} virtual ~CPUWorkerBase() {} virtual void SetDeviceIndex(int tid) { thread_id_ = tid; } virtual void TrainFiles() = 0; virtual void TrainFilesWithProfiler() {} virtual void PrintFetchVars() {} virtual void CreateDeviceResource(const ProgramDesc& main_prog) {} protected: int thread_id_; }; class HogwildWorker : public CPUWorkerBase { public: HogwildWorker() {} virtual ~HogwildWorker() { for (OperatorBase* op : ops_) { delete op; } std::vector().swap(ops_); } virtual void Initialize(const TrainerDesc& desc); virtual void TrainFiles(); virtual void TrainFilesWithProfiler(); virtual void PrintFetchVars(); virtual void CreateDeviceResource(const ProgramDesc& main_prog); virtual void BindingDataFeedMemory(); template void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim); protected: void CreateThreadOperators(const ProgramDesc& program); void CreateThreadScope(const ProgramDesc& program); std::vector op_names_; std::vector ops_; // Scope* thread_scope_; HogwildWorkerParameter param_; std::vector skip_ops_; std::map stat_var_name_map_; }; class DownpourWorker : public HogwildWorker { public: DownpourWorker() {} virtual ~DownpourWorker() {} virtual void Initialize(const TrainerDesc& desc); virtual void TrainFiles(); virtual void TrainFilesWithProfiler(); virtual void SetNeedDump(bool need_dump_field); virtual void SetChannelWriter(ChannelObject* queue); protected: std::shared_ptr fleet_ptr_; std::shared_ptr pull_dense_worker_; void FillSparseValue(size_t table_id); void PushGradients(); void CollectLabelInfo(size_t table_id); void AdjustInsWeight(); private: bool need_to_push_dense_; bool need_dump_field_; bool dump_slot_; bool need_to_push_sparse_; std::vector dump_fields_; ChannelWriter writer_; DownpourWorkerParameter param_; float scale_datanorm_; // just save the value in param_ for easy access std::map label_var_name_; std::map> sparse_key_names_; std::map> sparse_value_names_; std::map> sparse_grad_names_; std::map> dense_value_names_; std::map> dense_grad_names_; // feasign std::map> features_; // feasign stats std::map> feature_labels_; // feasign embedding std::map>> feature_values_; // feasign embedding gradient std::map>> feature_grads_; // skipped ops std::vector skip_ops_; std::shared_ptr _pull_dense_worker; std::vector<::std::future> push_sparse_status_; std::vector<::std::future> push_dense_status_; // adjust ins weight AdjustInsWeightConfig adjust_ins_weight_config_; std::vector nid_show_; // check nan and inf during training std::vector check_nan_var_names_; }; #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) using ScopeQueue = operators::reader::BlockingQueue; class SyncFunctor { public: SyncFunctor(int rank_id, int rank_num, int sync_steps); virtual ~SyncFunctor() {} void SetSyncParam(const std::vector& sync_param) { sync_param_ = &sync_param; } void SetNcclCtxMap(platform::NCCLContextMap* nccl_ctx_map) { nccl_ctx_map_ = nccl_ctx_map; } int operator()(Scope* scope); static std::vector pipeline_scopes_; static uint64_t sync_flag_; protected: const int rank_id_; const int rank_num_; const std::vector* sync_param_ = nullptr; platform::NCCLContextMap* nccl_ctx_map_ = nullptr; uint64_t sync_signal_; const int sync_steps_; int counter_; void Synchronize(); }; class SectionWorker : public DeviceWorker { public: SectionWorker() {} ~SectionWorker() override {} void Initialize(const TrainerDesc& desc) override; void BindingDataFeedMemory() override {} void CreateDeviceResource(const ProgramDesc& main_prog) override{}; void TrainFiles() override; void TrainFilesWithProfiler() override; void PrintFetchVars() override {} const platform::Place& place() const { return place_; } void SetSectionIndex(int section_id) { section_id_ = section_id; } void SetDeviceIndex(int tid) override { pipeline_id_ = tid; } void SetThreadIndex(int thread_id) { thread_id_ = thread_id; } void SetVarNames(const std::vector& in_var_names, const std::vector& out_var_names) { in_var_names_ = &in_var_names; out_var_names_ = &out_var_names; } void SetScopeQueue(ScopeQueue* in_scope_queue, ScopeQueue* out_scope_queue) { in_scope_queue_ = in_scope_queue; out_scope_queue_ = out_scope_queue; } void SetCountMutex(std::mutex* mutex) { worker_count_mutex_ = mutex; } void SetWorkerCount(int* worker_count) { worker_count_ = worker_count; } void SetSectionNum(int section_num) { section_num_ = section_num; } void SetPipelineNum(int pipeline_num) { pipeline_num_ = pipeline_num; } void SetNextSectionPlace(const paddle::platform::Place& place) { next_section_place_ = place; } SyncFunctor* sync_func_ = nullptr; void SetSyncFunctor(SyncFunctor* sync_func) { sync_func_ = sync_func; } static std::atomic cpu_id_; protected: void AutoSetCPUAffinity(bool reuse); int section_id_; int pipeline_id_; int section_num_; int pipeline_num_; int thread_id_; // This worker will consume scope from in_scope_queue_ // and produce scope to out_scope_queue_ ScopeQueue* in_scope_queue_ = nullptr; ScopeQueue* out_scope_queue_ = nullptr; const std::vector* in_var_names_ = nullptr; const std::vector* out_var_names_ = nullptr; std::mutex* worker_count_mutex_ = nullptr; int* worker_count_ = nullptr; paddle::platform::Place next_section_place_; std::vector> ops_; platform::DeviceContext* dev_ctx_ = nullptr; }; #endif } // namespace framework } // namespace paddle