# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import os import unittest import paddle from paddle.fluid.framework import IrGraph from paddle.framework import core paddle.enable_static() os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["CPU_NUM"] = "1" def conv_block(): img = paddle.static.data( name='image', shape=[-1, 1, 28, 28], dtype='float32' ) label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64') conv_out_1 = paddle.static.nn.conv2d( input=img, filter_size=5, num_filters=20, act='relu', ) conv_pool_1 = paddle.nn.functional.max_pool2d( conv_out_1, kernel_size=2, stride=2 ) conv_pool_1 = paddle.static.nn.batch_norm(conv_pool_1) conv_out_2 = paddle.static.nn.conv2d( input=conv_pool_1, filter_size=5, num_filters=20, act='relu', ) conv_pool_2 = paddle.nn.functional.max_pool2d( conv_out_2, kernel_size=2, stride=2 ) prediction = paddle.static.nn.fc( x=conv_pool_2, size=10, activation='softmax' ) loss = paddle.nn.functional.cross_entropy(input=prediction, label=label) avg_loss = paddle.mean(loss) return [img, label], avg_loss class TestGraph(unittest.TestCase): def graph_apis(self, use_cuda=False, for_ci=True): main = paddle.static.Program() startup = paddle.static.Program() with paddle.utils.unique_name.guard(): with paddle.static.program_guard(main, startup): feeds, loss = conv_block() opt = paddle.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) graph = IrGraph(core.Graph(main.desc), for_test=False) backup_graph = graph.clone() self.assertEqual(len(graph.all_nodes()), len(backup_graph.all_nodes())) build_strategy = paddle.static.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False origin_binary = paddle.static.CompiledProgram( graph.graph, build_strategy=build_strategy ) backup_binary = paddle.static.CompiledProgram( backup_graph.graph, build_strategy=build_strategy ) place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup) iters = 5 batch_size = 8 train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=batch_size ) feeder = paddle.fluid.DataFeeder(feed_list=feeds, place=place) def _train(binary): for _ in range(iters): data = next(train_reader()) loss_v = exe.run( binary, feed=feeder.feed(data), fetch_list=[loss.name] ) if not for_ci: print('{}: {}'.format('loss', loss_v)) _train(origin_binary) _train(backup_binary) marked_nodes = set() for op in graph.all_op_nodes(): if op.name().find('conv2d') > -1: marked_nodes.add(op) if not for_ci: graph.draw('.', 'residual', marked_nodes) backup_marked_nodes = set() for op in backup_graph.all_op_nodes(): if op.name().find('conv2d') > -1: backup_marked_nodes.add(op) backup_graph.draw('./origin', 'backup', backup_marked_nodes) self.assertFalse(graph.has_circle()) self.assertEqual(graph.graph_num(), 1) nodes = graph.topology_sort() self.assertEqual(len(nodes), len(graph.all_op_nodes())) nodes_map = graph.build_adjacency_list() self.assertEqual(len(nodes_map), len(graph.all_op_nodes())) nodes_num = len(graph.all_nodes()) graph.safe_remove_nodes(marked_nodes) self.assertEqual(len(graph.all_nodes()), nodes_num - len(marked_nodes)) def test_graph_apis_cpu(self): self.graph_apis(use_cuda=False, for_ci=True) def test_graph_apis_cuda(self): if core.is_compiled_with_cuda(): self.graph_apis(use_cuda=True, for_ci=True) if __name__ == '__main__': unittest.main()