# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import sys import numpy as np from paddle.fluid import core from paddle.fluid import framework __all__ = ['PyLayer'] @contextlib.contextmanager def trace_scope(scope, block): tmp_scope = framework._imperative_tracer().scope tmp_block = framework._imperative_tracer().block framework._imperative_tracer().scope = scope framework._imperative_tracer().block = block yield framework._imperative_tracer().scope = tmp_scope framework._imperative_tracer().block = tmp_block class PyLayer(core.Layer): def __init__(self): self._scope = core.Scope() self._block = framework.default_main_program().current_block() def __call__(self, inputs): with trace_scope(self._scope, self._block.desc): if not isinstance(inputs, list) and not isinstance(inputs, tuple): inputs = [inputs] var_inputs = [] for x in inputs: if isinstance(x, np.ndarray): py_var = framework.Variable( self._block, type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=x.shape, dtype=x.dtype) var = self._scope.var(py_var.name) tensor = var.get_tensor() tensor.set(x, core.CPUPlace()) var_inputs.append(py_var) elif isinstance(x, framework.Variable): var_inputs.append(x) else: raise ValueError("not var or ndarray %s" % type(x)) outputs = self.forward(var_inputs) return outputs def forward(self, inputs): print("at python.") return []