/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MkldnnFcLayer.h" #include "paddle/utils/Logging.h" #include "paddle/utils/Stat.h" namespace paddle { REGISTER_LAYER(mkldnn_fc, MkldnnFcLayer); bool MkldnnFcLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!MkldnnLayer::init(layerMap, parameterMap)) { return false; } CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet!"; CHECK_EQ(inputLayers_.size(), parameters_.size()); CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet"; // output size, cat not be changed oc_ = getSize(); oh_ = 1; ow_ = 1; // input size can not change in FC iLayerSize_ = inputLayers_[0]->getSize(); CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_); // create weight weight_ = std::unique_ptr(new Weight(oc_, iLayerSize_, parameters_[0], 0)); // create biases if (biasParameter_.get() != NULL) { biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_)); } return true; } void MkldnnFcLayer::convertWeightsFromPaddle() { if (FLAGS_use_mkldnn_wgt) { return; } if (hasInitedWgt_) { return; } // The weight_ is transposed from initial paddle weight MatrixPtr paddleWgt = Matrix::create( weight_->getW()->getData(), iLayerSize_, oc_, false, false); std::ostringstream ostr; paddleWgt->print(ostr); VLOG(DNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str(); // The mkldnn weight is transposed from initial paddle matrix MatrixPtr paddleWgtT; paddleWgt->transpose(paddleWgtT, true); weight_->getW()->copyFrom(*paddleWgtT); hasInitedWgt_ = true; } void MkldnnFcLayer::convertWeightsToPaddle() { MatrixPtr dnnWgt = weight_->getW(); MatrixPtr paddleWgt; dnnWgt->transpose(paddleWgt, true); // copy paddle weight and override on weight_ MatrixPtr dnnWgtT = Matrix::create( dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false); dnnWgtT->copyFrom(*paddleWgt); } void MkldnnFcLayer::reshape() { const Argument& input = getInput(0); int batchSize = input.getBatchSize(); if (bs_ == batchSize) { return; } bs_ = batchSize; ih_ = input.getFrameHeight(); iw_ = input.getFrameWidth(); if (ih_ == 0) { ih_ = 1; } if (iw_ == 0) { iw_ = 1; } CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); ic_ = iLayerSize_ / (ih_ * iw_); CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible"; CHECK_EQ(size_t(oc_), getSize()); printSizeInfo(); // reset output output_.setFrameHeight(oh_); output_.setFrameWidth(ow_); resetOutput(bs_, oc_); } void MkldnnFcLayer::forward(PassType passType) { Layer::forward(passType); reshape(); { REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); real* input = getInputValue(0)->getData(); real* output = getOutputValue()->getData(); real* wgt = weight_->getW()->getData(); bool hasBias = biases_ && biases_->getW(); real* bias = hasBias ? biases_->getW()->getData() : NULL; mkldnnForwardFC(bs_, ic_, ih_, iw_, input, oc_, output, wgt, bias); } /* activation */ { REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); forwardActivation(); } } void MkldnnFcLayer::backward(const UpdateCallback& callback) { /* Do derivation */ { REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); backwardActivation(); } bool hasBias = biases_ && biases_->getWGrad(); { REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); real* inVal = getInputValue(0)->getData(); real* inGrad = getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL; real* outGrad = getOutputGrad()->getData(); real* wgtGrad = weight_->getWGrad()->getData(); real* wgtVal = weight_->getW()->getData(); real* biasGrad = hasBias ? biases_->getWGrad()->getData() : NULL; mkldnnBackwardFC(bs_, ic_, ih_, iw_, inGrad, inVal, oc_, outGrad, wgtGrad, wgtVal, biasGrad); } { REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); weight_->getParameterPtr()->incUpdate(callback); if (hasBias) { biases_->getParameterPtr()->incUpdate(callback); } } } } // namespace paddle