/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/activation_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_device_function.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" #include "paddle/phi/kernels/impl/activation_grad_impl.h" #include "paddle/phi/kernels/impl/activation_impl.h" namespace phi { template void ActivationGPUImpl(const Context& dev_ctx, const DenseTensor& x, DenseTensor* out, const Functor& functor) { PADDLE_ENFORCE_NOT_NULL(out, errors::NotFound("Output Out should not be nullptr")); dev_ctx.template Alloc(out); std::vector ins = {&x}; std::vector outs = {out}; funcs::ElementwiseKernel(dev_ctx, ins, &outs, functor); } #define DEFINE_GPU_ACTIVATION_KERNEL(name, functor_class) \ template \ void name##Kernel( \ const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { \ funcs::functor_class functor; \ ActivationGPUImpl>( \ dev_ctx, x, out, functor); \ } #define DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(name, \ functor_class) \ template \ void name##Kernel( \ const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { \ funcs::functor_class functor; \ using U = \ typename std::conditional_t::value, float, T>; \ ActivationGPUImpl>( \ dev_ctx, x, out, functor); \ } #define DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(name, functor_class, attr) \ template \ void name##Kernel(const Context& dev_ctx, \ const DenseTensor& x, \ float attr, \ DenseTensor* out) { \ funcs::functor_class functor; \ auto attrs = functor.GetAttrs(); \ *(attrs[0].second) = attr; \ ActivationGPUImpl>( \ dev_ctx, x, out, functor); \ } #define DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS( \ name, functor_class, attr1, attr2) \ template \ void name##Kernel(const Context& dev_ctx, \ const DenseTensor& x, \ float attr1, \ float attr2, \ DenseTensor* out) { \ funcs::functor_class functor; \ auto attrs = functor.GetAttrs(); \ *(attrs[0].second) = attr1; \ *(attrs[1].second) = attr2; \ ActivationGPUImpl>( \ dev_ctx, x, out, functor); \ } DEFINE_GPU_ACTIVATION_KERNEL(Cos, CudaCosFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Tan, CudaTanFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Acos, CudaAcosFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Sin, CudaSinFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Asin, CudaAsinFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Atan, CudaAtanFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Sinh, CudaSinhFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Cosh, CudaCoshFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Asinh, CudaAsinhFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Acosh, CudaAcoshFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Atanh, CudaAtanhFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Relu, CudaReluFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Tanh, CudaTanhFunctor) DEFINE_GPU_ACTIVATION_KERNEL(TanhShrink, CudaTanhShrinkFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Silu, CudaSiluFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Reciprocal, CudaReciprocalFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Square, CudaSquareFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Sqrt, CudaSqrtFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Rsqrt, CudaRsqrtFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Softsign, CudaSoftsignFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Sigmoid, CudaSigmoidFunctor) DEFINE_GPU_ACTIVATION_KERNEL(LogSigmoid, CudaLogSigmoidFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Round, CudaRoundFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Floor, CudaFloorFunctor) DEFINE_GPU_ACTIVATION_KERNEL(Ceil, CudaCeilFunctor) DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log, CudaLogFunctor) DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log2, CudaLog2Functor) DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log10, CudaLog10Functor) DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log1p, CudaLog1pFunctor) DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Exp, CudaExpFunctor) DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Expm1, CudaExpm1Functor) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LeakyRelu, CudaLeakyReluFunctor, alpha) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LogitCUDA, CudaLogitFunctor, eps) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(ThresholdedRelu, CudaThresholdedReluFunctor, threshold) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(HardShrink, CudaHardShrinkFunctor, threshold) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SoftShrink, CudaSoftShrinkFunctor, lambda) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Elu, CudaELUFunctor, alpha) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Mish, CudaMishFunctor, threshold) DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Celu, CudaCELUFunctor, alpha) DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardTanh, CudaHardTanhFunctor, t_min, t_max) DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Stanh, CudaSTanhFunctor, scale_a, scale_b) DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Softplus, CudaSoftplusFunctor, beta, threshold) DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid, CudaHardSigmoidFunctor, slope, offset) DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Selu, CudaSeluFunctor, scale, alpha) template void HardSwishKernel(const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { funcs::CudaHardSwishFunctor functor; float threshold = 6; float scale = 6; float offset = 3; auto attrs = functor.GetAttrs(); *(attrs[0].second) = threshold; *(attrs[1].second) = scale; *(attrs[2].second) = offset; ActivationGPUImpl>( dev_ctx, x, out, functor); } template void SwishKernel(const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { funcs::CudaSwishFunctor functor; auto attrs = functor.GetAttrs(); *(attrs[0].second) = 1.0; ActivationGPUImpl>( dev_ctx, x, out, functor); } template void Relu6Kernel(const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { funcs::CudaRelu6Functor functor; auto attrs = functor.GetAttrs(); *(attrs[0].second) = 6.0; ActivationGPUImpl>( dev_ctx, x, out, functor); } } // namespace phi #ifdef PADDLE_WITH_HIP PD_REGISTER_KERNEL(relu, GPU, ALL_LAYOUT, phi::ReluKernel, float, double, phi::dtype::float16) {} #else PD_REGISTER_KERNEL(relu, GPU, ALL_LAYOUT, phi::ReluKernel, float, double, phi::dtype::float16, phi::dtype::bfloat16) {} #endif #define PD_REGISTER_ACTIVATION_KERNEL(name, func) \ PD_REGISTER_KERNEL(name, \ GPU, \ ALL_LAYOUT, \ phi::func, \ float, \ double, \ phi::dtype::float16, \ phi::dtype::bfloat16) {} #define PD_REGISTER_ACTIVATION_KERNEL_WITH_COMPLEX(name, func) \ PD_REGISTER_KERNEL(name, \ GPU, \ ALL_LAYOUT, \ phi::func, \ float, \ double, \ phi::dtype::float16, \ phi::dtype::bfloat16, \ phi::dtype::complex, \ phi::dtype::complex) {} PD_REGISTER_ACTIVATION_KERNEL_WITH_COMPLEX(sin, SinKernel) PD_REGISTER_ACTIVATION_KERNEL_WITH_COMPLEX(cos, CosKernel) PD_REGISTER_ACTIVATION_KERNEL_WITH_COMPLEX(tan, TanKernel) PD_REGISTER_ACTIVATION_KERNEL(acos, AcosKernel) PD_REGISTER_ACTIVATION_KERNEL(asin, AsinKernel) PD_REGISTER_ACTIVATION_KERNEL(atan, AtanKernel) PD_REGISTER_ACTIVATION_KERNEL(sinh, SinhKernel) PD_REGISTER_ACTIVATION_KERNEL(cosh, CoshKernel) PD_REGISTER_ACTIVATION_KERNEL(asinh, AsinhKernel) PD_REGISTER_ACTIVATION_KERNEL(acosh, AcoshKernel) PD_REGISTER_ACTIVATION_KERNEL(atanh, AtanhKernel) PD_REGISTER_ACTIVATION_KERNEL_WITH_COMPLEX(tanh, TanhKernel) PD_REGISTER_ACTIVATION_KERNEL(hardtanh, HardTanhKernel) PD_REGISTER_ACTIVATION_KERNEL(thresholded_relu, ThresholdedReluKernel) PD_REGISTER_ACTIVATION_KERNEL(relu6, Relu6Kernel) PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel) PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel) PD_REGISTER_ACTIVATION_KERNEL(stanh, StanhKernel) PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel) PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel) PD_REGISTER_ACTIVATION_KERNEL(rsqrt, RsqrtKernel) PD_REGISTER_ACTIVATION_KERNEL(softplus, SoftplusKernel) PD_REGISTER_KERNEL(exp, GPU, ALL_LAYOUT, phi::ExpKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(expm1, GPU, ALL_LAYOUT, phi::Expm1Kernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(square, GPU, ALL_LAYOUT, phi::SquareKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_ACTIVATION_KERNEL(hard_shrink, HardShrinkKernel) PD_REGISTER_ACTIVATION_KERNEL(softshrink, SoftShrinkKernel) PD_REGISTER_ACTIVATION_KERNEL(tanh_shrink, TanhShrinkKernel) PD_REGISTER_ACTIVATION_KERNEL(elu, EluKernel) PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel) PD_REGISTER_ACTIVATION_KERNEL(softsign, SoftsignKernel) PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel) PD_REGISTER_ACTIVATION_KERNEL_WITH_COMPLEX(logsigmoid, LogSigmoidKernel) PD_REGISTER_ACTIVATION_KERNEL(hardsigmoid, HardSigmoidKernel) PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel) PD_REGISTER_ACTIVATION_KERNEL(swish, SwishKernel) PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel) PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel) PD_REGISTER_ACTIVATION_KERNEL(ceil, CeilKernel) PD_REGISTER_ACTIVATION_KERNEL(celu, CeluKernel) PD_REGISTER_ACTIVATION_KERNEL(logit, LogitCUDAKernel) PD_REGISTER_KERNEL(log, GPU, ALL_LAYOUT, phi::LogKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(log2, GPU, ALL_LAYOUT, phi::Log2Kernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(log10, GPU, ALL_LAYOUT, phi::Log10Kernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(log1p, GPU, ALL_LAYOUT, phi::Log1pKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(pow, GPU, ALL_LAYOUT, phi::PowKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(selu, GPU, ALL_LAYOUT, phi::SeluKernel, float, double, phi::dtype::float16, phi::dtype::bfloat16) {}