Server

class paddle::ProtoServer

It implements the rpc framework, which launchs one thread for each connection. Here define one parameter server as single TCP server binding on single port. All connections share single tcp ProtoServer object, each connection handles all requests from specified trainer within single worker thread. to accelerate bandwidth efficiency and harness multicore for pserver optimization to reduce pserver latency, you could launch more port for single NIC hardward with port=N(N>1) for small cluster job.

Inherits from paddle::SocketServer

Subclassed by paddle::ParameterServer2

Public Types

typedef std::function<void(const google::protobuf::MessageLite &protoOut, const std::vector<iovec> &outputIovs)> ProtoResponseCallbackEx
typedef std::function<void(const google::protobuf::MessageLite &protoOut)> ProtoResponseCallback

Public Functions

ProtoServer(const std::string &addr, int port, int rdmaCpu = -1)

rdmaCpu controls the cpu affinity of RDMA server daemon, which could benifit performance. rdmaCpu = -1 means TCP is used instead of RDMA transport.

template <class ProtoIn>
void registerServiceFunction(const std::string &funcName, std::function<void(const ProtoIn &request, ProtoResponseCallback callback)> func)

Register a service function for this server void(const ProtoIn& request, ProtoResponseCallback callback) The service function process the request and call the callback after it finishes the request.

Use macro REGISTER_SERVICE_FUNCTION as a helper to simplify the use.

template <class ProtoIn>
void registerServiceFunctionEx(const std::string &funcName, std::function<void(const ProtoIn&, std::unique_ptr<MsgReader> msgReader, ProtoResponseCallbackEx callback)> func)

Register a service function for this server The signature of the service function is void(const ProtoIn&, std::unique_ptr<MsgReader> msgReader, ProtoResponseCallbackEx callback) The service function process the request and call the callback after it finishes the request. The extended service function can take extra input blocks from the communication channel by reading msgReader. It can also send extra blocks to the communication channel by providing outputIovs as the argument for the callback function.

Use macro REGISTER_SERVICE_FUNCTION_EX as a helper to simplify the use.

create wrapper function for parameter server high level function and register the wrapper function into function mapping.

template <class ProtoIn>
void registerServiceFunction(const std::string &funcName, std::function<void(const ProtoIn&, ProtoResponseCallback callback)> func)

Protected Types

typedef std::function<void(std::unique_ptr<MsgReader> msgReader, ResponseCallback callback)> ServiceFunction

Protected Functions

void handleRequest(std::unique_ptr<MsgReader> msgReader, ResponseCallback callback)

handle rpc request

Note
it lookups rpc function mapping table to find function pointer, then call this function with further reading data from connection
Parameters
  • msgReader: Message reader for reading data from connection
  • callback: equal to channel->writeMessage

void registerServiceFunctionImp(const std::string &funcName, ServiceFunction func)

register one RPC function in function mapping

Parameters
  • funcName: function name string
  • func: rpc function wrapped with reading and writing data

Protected Attributes

ThreadLocal<struct timeval> handleRequestBegin_

Tuning bare network overhead: the beginning of receiving request.

std::map<std::string, ServiceFunction> nameToFuncMap_

mapping to find rpc function while handling request

class paddle::ParameterServer2

Client interface for the parameter server

it implements several rpc API for remote parameter client usage. for sync-sgd, client needs one controller thread to build connections to all pservers, these controller connections do barriers synchronization with these connections used for transfering data. each data connection uses block based fine grained synchronization to gain better scalability. Merging gradients from different trainers are concurrently executed with block units, so that some network overhead will be hidden in merging gradient. for async-sgd, the difference is that pserver will do optimization immediately if the gradients are ready, so that pserver needs to prepare separate buffer to store value for sending back to trainer to prevent from being polluted.

Inherits from paddle::ProtoServer

Public Types

typedef void (ParameterServer2::*OperatorFunction)(const Operation &operation, OperationResult *result)

Public Functions

ParameterServer2(const std::string &addr, int port, int rdmaCpu = -1)

disable default parameter for overloading :the id of cpu core hosting RDMA server(0-N) -1 means using TCP transport instead of RDMA

~ParameterServer2()
template <typename Dtype>
void reduceAndSendData(const SendDataRequest &request, std::unique_ptr<MsgReader> &msgReader, ProtoResponseCallbackEx &callback)

service functions

void templateReduceSum(const SendDataRequest &request, std::unique_ptr<MsgReader> &msgReader, ProtoResponseCallbackEx &callback)
void sendParameter(const SendParameterRequest &request, std::unique_ptr<MsgReader> msgReader, ProtoResponseCallbackEx callback)

framework for sending parameters

Note
different parameter data type can be sent to pserver. in most case, the api is used to send gradients from trainer to pserver. it also can be used to retrieve parameters from pserver

void sendData(const SendDataRequest &request, std::unique_ptr<MsgReader> msgReader, ProtoResponseCallbackEx callback)
void setConfig(const SetConfigRequest &request, ProtoResponseCallback callback)

send config to pserver

Note
it can help pserver to understand the configuration for optimization, logging control, duplicated initialization, etc.

void getStatus(const GetStatusRequest &request, ProtoResponseCallback callback)

get status for pserver

Note
used to check if parameters are ready at pserver

void setStatus(const SetStatusRequest &request, ProtoResponseCallback callback)

set status for pserver

Note
used to check if parameters are ready at pserver, since parameters at pserver are initialized by trainer

void doOperation(const DoOperationRequest &request, ProtoResponseCallback callback)

framework for doing some operation at pserver end

Note
if sync-sgd is used, controller will calling op_SGD action for gradient optimization. check avaiable operations in opFuncs[]

void createVector(const CreateVectorRequest &request, ProtoResponseCallback callback)

Create a column vector. The size is the dimension of parameter.

void releaseVector(const ReleaseVectorRequest &request, ProtoResponseCallback callback)
void createMatrix(const CreateMatrixRequest &request, ProtoResponseCallback callback)

Create a column major matrix. The number of rows is the dimension of parameter. The number of columns is specifed by num_cols.

void releaseMatrix(const ReleaseMatrixRequest &request, ProtoResponseCallback callback)
void waitPassStart(const WaitPassStartRequest &request, ProtoResponseCallback callback)

stateful control for indicationg sync pass start

Note
it is valuable for logging and state control, especially for sync-sgd control

void waitPassFinish(const WaitPassFinishRequest &request, ProtoResponseCallback callback)

stateful control for indicationg sync pass end

Note
it is valuable for logging and state control, especially for sync-sgd control

void synchronize(const SynchronizeRequest &request, ProtoResponseCallback callback)

synchronize all distributed trainers

Note
it’s general api for synchronizing trainer and pserver

void asyncFinishPass(const SynchronizeRequest &request, ProtoResponseCallback callback)

stateful control for indicating async pass is finished

Note
it is valuable for logging control, state reset, etc.

void loadValueVector(const LoadValueRequest &request, ProtoResponseCallback callback)
void saveValueVector(const SaveValueRequest &request, ProtoResponseCallback callback)
bool init()

initialize parameter server

void setParameter(const SendParameterRequest &request, std::vector<Buffer> &inputBuffers, SendParameterResponse *response, std::vector<Buffer> *outputBuffers)

set parameters at pserver

Note
do parameter initialization if neccessy.

void asyncSGD(const SendParameterRequest &request, std::vector<Buffer> &inputBuffers, SendParameterResponse *response, std::vector<Buffer> *outputBuffers)

receive gradients and do optimization for async-sgd

Note
this api asynchronizately receives all data from all trainers, and immediately do optimization and return optimizated value for trainer. this above routine are block based atomic updating, which means different block could based different stale gradient. it will discard some lagged gradients by default for better convergence.

void addGradient(const SendParameterRequest &request, std::vector<Buffer> &inputBuffers, SendParameterResponse *response, std::vector<Buffer> *outputBuffers)

merge gradients from all trainer

Note
this api use block based parallelization as fine grained parallelization which benifits lock contention and latency hidden for communication, also can harness multi-core efficiently. it also implements the synchronization for sync-sgd

void getParameter(const SendParameterRequest &request, std::vector<Buffer> &inputBuffers, SendParameterResponse *response, std::vector<Buffer> *outputBuffers)

get dense parameters from pserver

Note
for some specified condition, trainer will get parameters from pservers. e.g. if all parameters are stored at perver end for big model training trainer can use it to retrieve all parameters if necessary.

void getParameterSparse(const SendParameterRequest &request, std::vector<Buffer> &inputBuffers, SendParameterResponse *response, std::vector<Buffer> *outputBuffers)

get sparse value from parameter server

Note
with sparse enabled, pservers own all latest value while trainer only retrieve value that only are needed. e.g. trainer will do prefetch action to retrieve necessary latest value from pserver for sparse calculation.

void op_SGD(const Operation &operation, OperationResult *result)
void op_RESET(const Operation &operation, OperationResult *result)
void op_utv(const Operation &operation, OperationResult *result)
void op_au_bv(const Operation &operation, OperationResult *result)
void op_COPY(const Operation &operation, OperationResult *result)
void op_au(const Operation &operation, OperationResult *result)
void op_au_bv_cw(const Operation &operation, OperationResult *result)
void op_make_steepest_desc_dir(const Operation &operation, OperationResult *result)
void op_fix_dir_signs(const Operation &operation, OperationResult *result)
void op_dir_deriv(const Operation &operation, OperationResult *result)
void op_fix_omega_signs(const Operation &operation, OperationResult *result)
void op_cost(const Operation &operation, OperationResult *result)
void op_start_pass(const Operation &operation, OperationResult *result)
void op_finish_pass(const Operation &operation, OperationResult *result)
void op_apply(const Operation &operation, OperationResult *result)
void op_randomize(const Operation &operation, OperationResult *result)
void op_load(const Operation &operation, OperationResult *result)
void op_save(const Operation &operation, OperationResult *result)
void tuningSgdMidOutput()

output log in at the middle stage of training

Note
flush log histroy and state at the end for sgd

void tuningSgdFinished()

output log in at the end stage of training

Note
flush log histroy and state at the end for sgd. it will also flush some stateful stat for next pass.

void tuningAsyncsgdMidOutput()

output log in at the middle stage of training

Note
flush log histroy and state at the end for async-sgd. it will log some performance log if some lagged node are found

void tuningAsyncsgdFinished()

output log in at the end stage of training

Note
flush log histroy and state at the end for async-sgd.

Public Static Attributes

const std::string kRetMsgInvalidMatrixHandle
const std::string kRetMsgInvalidVectorHandle
const std::string kRetMsgUnknownOperation
ParameterServer2::OperatorFunction opFuncs

doOperation will call following operations indirectly e.g. for sync-sgd control, the controller in remote updater will send op_SGD command to pserver, then send sendParameter request to pserver immediately. the two function at pserver end will do cooperation to achieve the sync-sgd gradient merge and optimization. the most following operations are specified for owlqn, all operations are under the context of doOperation function

Protected Types

typedef std::pair<size_t, int64_t> BlockKey
typedef std::unordered_map<BlockKey, int64_t, BlockKeyHash> BlockMap

all parameters are stored in CpuVector with a blockMap_ data structure to index block data required by requests.

typedef std::vector<std::pair<int64_t, int64_t>> BlockSegments
typedef std::function<void(int64_t blockId, const VectorPtr vecs[])> ExecFunc

framework routine for block parallelization e.g. for optimization on all blocks at pserver end, this routine can facilitize the parallelize of do optimization on all blocks with multithreads.

Protected Functions

bool asyncGrdientCommitCheckAndStat(const SendParameterRequest &request)

async gradient commit control

void printAsyncGradientCommitStatAndReset()
void mergeSegments(BlockSegments *segments)
void clearUnusedSegments(CpuVector *vec)

set the unused segments to zero

void readAllBlocks(MsgReader *msgReader, std::vector<ParameterServer2::Buffer> *buffers)

read all data from connection and store it in static pre-allocated buffer

const ParameterConfig &getParameterConfig(const ParameterBlock &block)
const ParameterConfig &getParameterConfig(int64_t blockId) const

it implictly check blockOffsetMap_ while retrieving blockId

template <class Response>
bool isValidVectorHandle(int64_t handle, Response *response)
template <class Response>
bool isValidMatrixHandle(int64_t handle, Response *response)
int64_t getBlockOffset(const ParameterBlock &block) const

get block offset

Note
block.begin_dim is added to the block offset. return -1 if block cannot be found

int64_t getBlockId(const ParameterBlock &block) const

return -1 if block cannot be found

void sendBackParameter(const ParameterBlock &block, int parameterType, SendParameterResponse *response, std::vector<Buffer> *outputBuffers)

prepare data for sending back

Note
modify reponse and outputBuffers for sending parameter back to client. The buffer for socket sending uses vectors_[parameterType] directly for dense with sync-sgd

void sendBackParameter(const ParameterBlock &block, int parameterType, SendParameterResponse *response, Buffer *buffer, std::vector<Buffer> *outputBuffers)

prepare data for sending back

Note
modify response and outputBuffers for sending parameter back to client. The buffer for socket sending uses buffer->base The parameter values are copied from vectors_[parameterType] to buffer->base. for dense with async-sgd

void sendBackParameterSparse(const ParameterBlock &block, int parameterType, SendParameterResponse *response, Buffer *buffer, size_t width, std::vector<Buffer> *outputBuffers)

prepare data for sending back

Note
specified for sparse

void parallelExecForEachBlock(ExecFunc func)
void blockTraverse(BlockInfo &info, const ParameterConfig &config, int64_t offset, size_t size, const VectorPtr vecs[], const ParameterOptimizer::TraverseCallback &callback)

Protected Attributes

RWLock parameterMutex_

parameter_ mutex.

BlockMap blockOffsetMap_

<(para, block), global offset(byte) in all parameters>

BlockMap blockIdMap_

<(para, block), global idx [0, nBlocksInAllParameters]>

std::vector<CpuVectorPtr> vectors_
std::vector<CpuMatrixPtr> matrices_
std::vector<CpuMemHandlePtr> dataMems_
std::unordered_map<size_t, ParameterConfig> configMap_

mapping between parameter and config different parameter allows different config, such as decay_rate. for each request, it need to read config for adding gradient and optmization.

std::vector<BlockInfo> blockInfos_
BlockSegments usedSegments_

Because some blocks might not be fully used. We keep a record of which segments are used.

PServerStatus status_

record pserver status, all status defined in ParameterService.pb

std::atomic<int64_t> numSamplesProcessed_

record all samples processed which could be used by optimizater

double cost_
int mpiSize_
int dataSize_
OptimizationConfig config_

configuration for current parameter optimizer

ThreadLocal<ReadWriteBuffer<real, ALIGN_HINT>> readWriteBuffer_

to buffer the data from network for further processing to reduce redundant memory allocation.

int64_t size_

size of the parameter

ThreadBarrier gradientReadyBarrier_

for synchronized training, check details in addGradient() and doOperation()

ThreadBarrier parameterReadyBarrier_
ThreadBarrier passBarrier_
ThreadLocal<std::vector<SendParameterRequest>> requestVec_
ThreadLocal<std::vector<ProtoResponseCallbackEx>> callbackVec_
std::atomic<int> numPassFinishClients_
bool allClientPassFinish_
std::vector<std::unique_ptr<ThreadBarrier>> synchronizeBarriers_
std::atomic<int> serverId_
int64_t asyncLaggedThreshold_

for lagged async gradient gradient commit control in Async Sgd. discard lagged gradients from too slow nodes, whose gradients exhibits bad quality. Algorithm: pserver:

  1. initial asyncUpdaterSteps = 0, asyncTrainerSteps_[N] = 0. syncUpdaterSteps means the version of parameter value.
  2. when pull arrives, record asyncUpdateSteps_ into syncTrainerSteps_[trainer_id]
  3. when push arrives, compare asyncUpdateSteps_ with syncTrainerSteps_[trainer_id] if delta > threshold, discard current gradient, else commit gradient.
  4. reset asyncUpdaterSteps_ and asyncTrainerSteps_[N] when pass finished Note: it can not discard all lag-gradient strictly in some special condition. part of gradients could be discarded if ConcurrentRemoteParameterUpdater is sed. this algorithm is implemented in asynSGD()

std::atomic<int64_t> asyncUpdateSteps_
std::vector<int64_t> asyncTrainerSteps_
size_t asyncLaggedGradientsNum_
std::vector<size_t> asyncUpdateStat_

stat all async update

std::vector<size_t> asyncTrainerDiscardStat_

stat per trainer_id

std::vector<size_t> asyncTrainerCommitStat_

stat per trainer_id

std::unique_ptr<SyncThreadPool> syncThreadPool_

only used by controller and other control cmd from trainer number 0

bool isSparseServer_

pserver for sparse remote update parameters

std::atomic<int64_t> batchId_

barrier performance tuning sync-sgd required

ThreadLocal<struct timeval> addGradBegin_

the beginning of addGradient without network overhead

std::unique_ptr<StatSet> statSet_

tuning barrier performance to better control log for sparse and dense parameter, we use different log entities for different parameterServer objects. it will output lots of performance stats to perceive the overhead of network, fluctuation of computation from forwardbackward and network, computation from optimization at pserver end, barrier overhead, etc. to understand tuning data, focus on the synchronization between addGradient and doOperation which indirectly call op_SGD operation controlled by remote updater controller

struct BlockInfo

to parallelize the multi-thread and multi-connnection computation at pserver, it use block unit to reduce the contention for computation, even further use block level optimizater control for each block for some special reason annotated below.

Public Members

const ParameterConfig *config
std::unique_ptr<std::mutex> lock
uint64_t offset

global offset for all parameters

std::unique_ptr<ParameterOptimizer> optimizer

Async sgd in pserver is very different from sync sgd. Each trainer follows startBatch, update*, finishBatch as in sync sgd, but all these actions are almost executed by multi-core and multi-thread simutaneously, so that async sgd optimization is based on block level in reality, then per block optimization is necessary indeed. In addition, per block optimization is also perfered for performance with multithreads.

struct BlockKeyHash

Public Functions

size_t operator()(const BlockKey &key) const
struct Buffer

Public Members

real *base
size_t size
template <typename T, size_t AlignBytes>
class ReadWriteBuffer

The ReadWriteBuffer is based on std::vector, but aligned for avx/sse compute. And add some helper method to allocate memory aligned blocks.

Parameters
  • T: type of element.
  • AlignBytes: the memory aligned bytes for allocated blocks.

Inherits from std::vector< T, AlignedAllocator< T, AlignBytes > >

Public Functions

void resizeWithAlignHints(size_t size, size_t alignBlockCount = 1)

Resize Buffer, with block count that will be allocated. Each block will be memory aligned in AlignBytes.

Parameters
  • size: The element count in all blocks.
  • alignBlockCount: The block count that will be allocated.

void resetAlignAlloc()

reset aligned allocate blocks.

T *nextBlock(size_t blockSize)

get next aligned block address.

Return
Aligned block address.
Parameters
  • blockSize: is the element count in each block.

Public Static Attributes

constexpr bool IsTLargerThanAlign

IsTLargerThanAlign compiled time calculated constant for is type T larger than alignments.

constexpr size_t AlignElementCount

if AlignBytes > sizeof(T), then will calcuate how many elements can be stored in AlignBytes.

Private Members

size_t curOffset_