# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid import framework as framework from . import core import collections import copy import unique_name __all__ = [ 'append_backward', 'calc_gradient', ] def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None): """ Traverse all ops in op_descs[begin_idx : end_idx], if any op has inputs/outputs named "old_name", rename it as 'new_name' """ if begin_idx is None: begin_idx = 0 if end_idx is None: end_idx = len(op_descs) for i in range(begin_idx, end_idx): op_desc = op_descs[i] if isinstance(op_desc, tuple): op_desc = op_desc[0] op_desc.rename_input(old_name, new_name) op_desc.rename_output(old_name, new_name) def _create_op_desc_(op_type, inputs, outputs, attrs): """ Create a C++ OpDesc object with specified inputs, outputs and attributes. """ op_desc = core.OpDesc() op_desc.set_type(op_type) for para, args in inputs.iteritems(): op_desc.set_input(para, args) for para, args in outputs.iteritems(): op_desc.set_output(para, args) op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName() if op_role_attr_name not in attrs: attrs[ op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward for name, val in attrs.iteritems(): if isinstance(val, framework.Block): op_desc.set_block_attr(name, val.desc) else: op_desc.set_attr(name, val) return op_desc def _infer_var_data_type_(grad_var_name, block): """ Infer the data type of given grad variable """ grad_var = block.desc.find_var(grad_var_name.encode("ascii")) fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii")) if block.desc.has_var_recursive(fwd_name): fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii")) grad_var.set_dtype(fwd_var.dtype()) else: grad_var.set_dtype(core.VarDesc.VarType.FP32) def _all_in_set_(cands, s): """ Test if all elements of 'cands' are in set 's' """ if len(cands) == 0: return False for c in cands: if not c in s: return False return True def _some_in_set_(cands, s): """ Test if some elements of 'cands' are in set 's' """ if len(cands) == 0: return False for c in cands: if c in s: return True return False def _strip_grad_suffix_(name): """ Strip the grad suffix from the given varibale name e.g. x@GRAD ==> x y@GRAD@RENAME@1 ==> y """ pos = name.find(core.grad_var_suffix()) return name[:pos] if pos != -1 else name def _append_grad_suffix_(name): """ Append grad suffix to the given variable name e.g. x ==> x@GRAD """ return name + core.grad_var_suffix() def _addup_repetitive_outputs_(op_descs): """ In backward part, an variable may be the output of more than one ops. In this case, the variable should be the accumulation of all the outputs. `sum_op`s are added to implement the accumulate. """ pending_sum_ops = [] var_rename_count = collections.defaultdict(int) renamed_vars = collections.defaultdict(list) for idx, op_desc in enumerate(op_descs): for var_name in op_desc.input_arg_names(): if len(renamed_vars[var_name]) > 1: pending_sum_ops.append((_create_op_desc_( "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]}, {"use_mkldnn": False}), idx)) renamed_vars[var_name] = [var_name] for param_name in op_desc.output_names(): arg_names = op_desc.output(param_name) for arg_idx, var_name in enumerate(arg_names): if var_name == core.empty_var_name( ) or var_name in op_desc.input_arg_names(): # empty variable or inplace op continue if len(renamed_vars[var_name]) == 0: # it's the first time we get the variable renamed_vars[var_name] = [var_name] else: if len(renamed_vars[var_name]) == 1: new_name = var_name + "@RENAME@" + \ str(var_rename_count[var_name]) var_rename_count[var_name] += 1 # rename original var_name renamed_vars[var_name][0] = new_name _rename_arg_(op_descs, var_name, new_name, 0, idx) _rename_arg_(pending_sum_ops, var_name, new_name) new_name = var_name + "@RENAME@" + \ str(var_rename_count[var_name]) var_rename_count[var_name] += 1 arg_names[arg_idx] = new_name op_desc.set_output(param_name, arg_names) renamed_vars[var_name].append(new_name) for var_name, inputs in renamed_vars.iteritems(): if len(inputs) > 1: pending_sum_ops.append( (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]}, {"use_mkldnn": False}), len(op_descs))) # sum_op descs are sorted according to their insert position for p in reversed(pending_sum_ops): op_descs.insert(p[1], p[0]) return op_descs def _remove_no_grad_branch_(op_descs, no_grad_set): """ Remove unnecessary grad ops A grad op can be removed in two cases: 1. all outputs of the grad op are in 'no_grad_set' 2. all grad inputs of the grad op are in 'no_grad_set' """ def _op_can_be_removed_(op_desc, no_grad_set): out_arg_names = op_desc.output_arg_names() if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set): return True if _all_in_set_( filter(lambda name: name.find(core.grad_var_suffix()) != -1, op_desc.input_arg_names()), no_grad_set): no_grad_set.update(out_arg_names) return True return False # Remove ops whose outputs are all in no_grad_dict op_descs = filter( lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs) # Insert fill_zeros_like_op to_insert = [] for idx, op_desc in enumerate(op_descs): for arg in op_desc.input_arg_names(): if core.grad_var_suffix() in arg and arg in no_grad_set: to_insert.append((_create_op_desc_("fill_zeros_like", { "X": [_strip_grad_suffix_(arg)] }, {"Out": [arg]}, {}), idx)) map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert)) return op_descs import proto.framework_pb2 as framework_pb2 def serialize_op_decs(op_desc): protostr = op_desc.serialize_to_string() proto = framework_pb2.OpDesc.FromString(str(protostr)) return proto.__str__() def _callback_lookup_(op): """ Only used in _append_backward_ops_ Build and returns a callback function for certain op. For example parallel_do: AllReduce :param op: :return: callback function """ if op.type == 'parallel_do' and op.attr('use_nccl'): all_vars = op.block.vars param_names = set(op.input('parameters')) param_names = filter(lambda name: all_vars[name].stop_gradient is False, param_names) param_grad_names = [n + "@GRAD" for n in param_names] class ParallelDoCallBack(object): def __init__(self, param_grad_names, parallel_scopes_name): self.has_inserted_nccl_init = False self.param_grad_names = param_grad_names self.parallel_scopes_name = parallel_scopes_name def __call__(self, block, context): if not self.has_inserted_nccl_init: op_desc = _create_op_desc_( "ncclInit", {"parallel_scopes": self.parallel_scopes_name}, {"Communicator": ['nccl_com__do_not_change_']}, {}) block.program.global_block().desc.append_op().copy_from( op_desc) self.has_inserted_nccl_init = True current_op_desc = context["__current_op_desc__"] for o_param in current_op_desc.output_names(): for o_argu in current_op_desc.output(o_param): if o_argu in self.param_grad_names: allreduce_out_name = o_argu + "__nccl_all_reduce__" op_desc = _create_op_desc_( "ncclReduce", { "X": [o_argu], "Communicator": ['nccl_com__do_not_change_'] }, {"Out": [allreduce_out_name]}, {"reduction": "ncclSum", "root": 0}, ) block.desc.append_op().copy_from(op_desc) op_desc = _create_op_desc_( "assign", {"X": [allreduce_out_name]}, {"Out": [o_argu]}, {}) block.desc.append_op().copy_from(op_desc) return ParallelDoCallBack(param_grad_names, op.output("parallel_scopes")) else: return None def _append_backward_ops_(block, ops, target_block, no_grad_dict, grad_to_var, callbacks=None): """ Create all grad ops, and insert them into given block Args: block(Block): the block where forward ops are ops(Op): the forward operators whose backward ops need to be added target_block(Block): the block which is going to hold new generated grad ops no_grad_dict(dict): key(int) block index val(set) a set of varibale names. These varibales have no gradient grad_to_var(dict)(output argument): key(str): grad variable name val(str): corresponding forward variable name callback(callable object): a callable object used to decorate new generated grad ops """ if callbacks is not None: assert (isinstance(callbacks, list)) for cb in callbacks: if not hasattr(cb, '__call__'): raise ValueError("'callback' must be a callable object.") # grad_op_descs holds created grad_op, and will be appended to target_block grad_op_descs = [] program = block.program for op in reversed(ops): grad_sub_block_list = [] # If the op has its own sub-block, deal with the sub-block first if op.has_attr("sub_block"): sub_block = program.block(op.block_attr("sub_block")) grad_sub_block = program.create_block() grad_sub_block.set_forward_block_idx(sub_block.idx) cb = _callback_lookup_(op) if cb is not None: if callbacks is None: new_callbacks = [cb] else: new_callbacks = callbacks + [_callback_lookup_(op)] _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block, no_grad_dict, grad_to_var, new_callbacks) else: _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block, no_grad_dict, grad_to_var, callbacks) program.rollback() grad_sub_block_list.append(grad_sub_block.desc) # Getting op's corresponding grad_op grad_op_desc, op_grad_to_var = core.get_grad_op_desc( op.desc, no_grad_dict[block.idx], grad_sub_block_list) grad_op_descs.extend(grad_op_desc) grad_to_var.update(op_grad_to_var) grad_op_descs = _addup_repetitive_outputs_(grad_op_descs) grad_op_descs = _remove_no_grad_branch_(grad_op_descs, no_grad_dict[block.idx]) # append op_desc in grad_op_descs to target_block op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName() backward = core.op_proto_and_checker_maker.OpRole.Backward for op_desc in grad_op_descs: new_op_desc = target_block.desc.append_op() new_op_desc.copy_from(op_desc) new_op_desc.set_attr(op_role_attr_name, backward) grad_to_var["__current_op_desc__"] = new_op_desc if callbacks is not None: assert (isinstance(callbacks, list)) for cb in callbacks: cb(block=target_block, context=grad_to_var) def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): """ Create new variables required by backward pass. Args: block(Block): the block where new variables will be created start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created grad_to_var(dict): key(str): grad variable name val(str): corresponding forward variable name In most cases, this dict is generated by _append_backward_ops_() grad_info_map(dict)(output argument): key(str): forward variable name val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable """ for op_idx in range(start_op_idx, block.desc.op_size()): op_desc = block.desc.op(op_idx) if op_desc.has_attr("sub_block"): sub_block = block.program.block(op_desc.block_attr("sub_block")) _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map) new_vars = set() # create new gradient variables for grad_var_name in op_desc.output_arg_names(): grad_var_name = grad_var_name.encode("ascii") if block.desc.has_var_recursive( grad_var_name) or grad_var_name == core.empty_var_name(): continue block.desc.var(grad_var_name) new_vars.add(grad_var_name) if not grad_to_var.has_key(grad_var_name): continue grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block) # infer_shape and infer_type op_desc.infer_var_type(block.desc) op_desc.infer_shape(block.desc) # ncclInit dones't need to set data_type if op_desc.type() == 'ncclInit': continue for arg in op_desc.output_arg_names(): if arg in new_vars: _infer_var_data_type_(arg, block) def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map): var_map = copy.copy(target_grad_map) for op_idx in range(start_op_idx, block.desc.op_size()): op_desc = block.desc.op(op_idx) for name in op_desc.input_arg_names(): if name in var_map: op_desc.rename_input(name, var_map[name]) for name in op_desc.output_arg_names(): if block.desc.find_var(name.encode("ascii")): new_name = unique_name.generate(name) op_desc.rename_output(name, new_name) var_map[name] = new_name for g, ng in var_map.iteritems(): if g in grad_to_var: grad_to_var[ng] = grad_to_var[g] grad_to_var.pop(g) def _get_stop_gradients_(program): no_grad_dict = dict() assert isinstance(program, framework.Program) for block in program.blocks: assert isinstance(block, framework.Block) block_no_grad_set = set() for var in block.vars.itervalues(): assert isinstance(var, framework.Variable) if var.stop_gradient: block_no_grad_set.add(_append_grad_suffix_(var.name)) no_grad_dict[block.idx] = block_no_grad_set return no_grad_dict def append_backward(loss, parameter_list=None, no_grad_set=None, callbacks=None): """ Append backward part to main_program. A complete neural network training is made up of forward and backward propagation. However, when we configure a network, we only need to specify its forwrd part. The backward part is generated automatically according to the forward part by this function. In most cases, users do not need to invoke this function manually. It will be automatically invoked by the optimizer's `minimize` function. Args: loss(Variable): The loss variable of the network. parameter_list(list[string]|None): Names of parameters that need to be updated by optimizers. If it is None, all parameters will be updated. Default: None no_grad_set(set|None): Variables in the Block 0 whose gradients should be ignored. All variables with `step_gradient=True` from all blocks will be automatically added into this set. Default: None callbacks(list[callable object]|None): The callbacks are used for doing some custom jobs during backward part building. All callable objects in it will be invoked once each time a new gradient operator is added into the program. The callable object must has two input parameters: 'block' and 'context'. The 'block' is the block which the new gradient operator will be added to. The 'context' is a map, whose keys are gradient variable names and values are corresponding original variables. In addition to this, the 'context' has another special key-value pair: the key is string '__current_op_desc__' and the value is the op_desc of the gradient operator who has just triggered the callable object. Returns: list[(Variable,Variable)]: Pairs of parameter and its corresponding gradients. The key is the parameter and the value is gradient variable. Raises: AssertionError: If `loss` is not an instance of Variable. Examples: .. code-block:: python # network configuration code # ... avg_loss = fluid.layers.mean(loss) param_grad_list = fluid.backward.append_backward(loss=avg_loss) """ assert isinstance(loss, framework.Variable) if loss.op is None: # the loss is from a cloned program. Find loss op manually. for op in reversed(loss.block.ops): assert isinstance(op, framework.Operator) if len(op.output_arg_names) == 1 and op.output_arg_names[ 0] == loss.name: loss.op = op break if loss.op is None: raise ValueError("loss.op is None. Should not happend") loss.op.set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(), int(core.op_proto_and_checker_maker.OpRole.Forward) | int(core.op_proto_and_checker_maker.OpRole.Loss)) if callbacks is not None: isinstance(callbacks, list) program = loss.block.program if no_grad_set is None: no_grad_set = set() no_grad_set = copy.copy(no_grad_set) no_grad_dict = _get_stop_gradients_(program) no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) grad_info_map = dict() root_block = program.block(0) fwd_op_num = root_block.desc.op_size() current_block_idx = program.current_block_idx grad_to_var = dict() op_desc = _create_op_desc_( "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, { "shape": [1], "value": 1.0, "dtype": loss.dtype, "force_cpu": False, core.op_proto_and_checker_maker.kOpRoleAttrName(): int(core.op_proto_and_checker_maker.OpRole.Backward) | int(core.op_proto_and_checker_maker.OpRole.Loss), }) root_block.desc.append_op().copy_from(op_desc) block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set) no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) _append_backward_ops_(root_block, op_path, root_block, no_grad_dict, grad_to_var, callbacks) # Because calc_gradient may be called multiple times, # we need rename the internal gradient variables so that they have # different names. _rename_grad_(root_block, fwd_op_num, grad_to_var, {}) _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map) program.current_block_idx = current_block_idx program.sync_with_cpp() # FIXME(zcd): prevent loss.grad optimized by mem_opt. loss.block.var(_append_grad_suffix_(loss.name)).persistable = True if parameter_list is not None: parameters = parameter_list else: params = program.global_block().all_parameters() parameters = [param.name for param in params] params_and_grads = [] for param in parameters: if param not in grad_info_map: continue grad_info = grad_info_map[param] grad_block = grad_info[1] if not grad_block.has_var(grad_info[0]): raise ValueError("grad block[{0}] did not have grad var {1}".format( grad_info[1], grad_info[0])) # Get the param var from the global block param_var = program.global_block().var(param) grad_var = grad_block.var(grad_info[0]) if loss.block.has_var(grad_info[0]): params_and_grads.append((param_var, grad_var)) else: params_and_grads.append((param_var, None)) op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName() for p, g in params_and_grads: if g is None: continue for op in reversed(program.global_block().ops): assert isinstance(op, framework.Operator) if g.name in op.output_arg_names: g.op = op break if g.op is None: raise ValueError("Unexpected branch") attr_val = [p.name, g.name] if g.op.has_attr(op_role_var_attr_name): attr_val.extend(g.op.attr(op_role_var_attr_name)) g.op.set_attr(op_role_var_attr_name, attr_val) return params_and_grads def _as_list(x): if x is None: return [] return list(x) if isinstance(x, collections.Sequence) else [x] def _find_op_path_(block, outputs, inputs, no_grad_set): """ no_grad_set will also be changed """ input_names = set([inp.name for inp in inputs]) output_names = set([out.name for out in outputs]) relevant_op_flags = [True] * len(block.ops) # All the inputs of the block are used if inputs is empty, if inputs: for i, op in enumerate(block.ops): if _some_in_set_(op.desc.input_arg_names(), input_names): for name in op.desc.output_arg_names(): if name not in no_grad_set: input_names.add(name) else: relevant_op_flags[i] = False for i, op in reversed(list(enumerate(block.ops))): if _some_in_set_(op.desc.output_arg_names(), output_names): for name in op.desc.input_arg_names(): if name not in no_grad_set: output_names.add(name) else: relevant_op_flags[i] = False op_path = [ block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i] ] if inputs: for op in op_path: for name in op.desc.input_arg_names(): if name not in input_names: no_grad_set.add(name) return op_path def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): """ Backpropagate the graidents of targets to inputs. Args: targets(Variable|list[Variable]): The target variables inputs(Variable|list[Variable]): The input variables no_grad_set(set[string]): The names of variables that have no gradients in Block 0. All variables with `stop_gradient=True` from all blocks will be automatically added. Return: (list[Variable]): list of gradients for inputs If an input does not affect targets, the corresponding gradient variable will be None """ targets = _as_list(targets) inputs = _as_list(inputs) target_gradients = _as_list(target_gradients) block = targets[0].block prog = block.program block_idx = block.idx if not target_gradients: target_gradients = [None] * len(targets) if len(targets) != len(target_gradients): raise ValueError( "Should have the same number of target_gradients as targets") if no_grad_set is None: no_grad_set = set() no_grad_set = copy.copy(no_grad_set) no_grad_dict = _get_stop_gradients_(prog) no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) fwd_op_num = block.desc.op_size() target_grad_map = {} for i, grad in enumerate(target_gradients): target = targets[i] if grad is None: grad_name = _append_grad_suffix_(target.name) op_desc = _create_op_desc_("fill_constant_batch_size_like", {"Input": [target.name]}, {"Out": [grad_name]}, { "shape": target.shape, "value": 1.0, "dtype": target.dtype, 'input_dim_idx': 0, 'output_dim_idx': 0 }) block.desc.append_op().copy_from(op_desc) else: if target.block.idx != block_idx or target.block.program != prog: raise ValueError("all targets must be in the same block") if target.shape != grad.shape: raise ValueError( "The shapes of target and grad are different: %s %s" % ( target.name, grad.name)) target_grad_map[_append_grad_suffix_(target.name)] = grad.name for input in inputs: if input.block.program != prog: raise "input must be in the same program as targets" block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) op_path = _find_op_path_(block, targets, inputs, block_no_grad_set) no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) grad_to_var = dict() grad_info_map = dict() _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var) # Because calc_gradient may be called multiple times, # we need rename the internal gradient variables so that they have # different names. _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map) _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map) prog.sync_with_cpp() grad_vars = [] for input_var in inputs: if input_var.name not in grad_info_map: grad_vars.append(None) else: grad_info = grad_info_map[input_var.name] grad_block = grad_info[1] grad_var = grad_block.var(grad_info[0]) grad_vars.append(grad_var) if len(grad_vars) == 1: return grad_vars[0] else: return grad_vars