# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. from __future__ import print_function import os import numpy as np import random import shutil import time import unittest import copy import logging import tempfile import paddle.nn as nn import paddle import paddle.fluid as fluid from paddle.fluid.contrib.slim.quantization import * from paddle.fluid.log_helper import get_logger from paddle.dataset.common import download from paddle.fluid.framework import _test_eager_guard from imperative_test_utils import fix_model_dict, ImperativeLenet, ImperativeLinearBn from imperative_test_utils import ImperativeLinearBn_hook _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') class TestFuseLinearBn(unittest.TestCase): """ Fuse the linear and bn layers, and then quantize the model. """ def test_fuse(self): model = ImperativeLinearBn() model_h = ImperativeLinearBn_hook() inputs = paddle.randn((3, 10), dtype="float32") config = PTQConfig(AbsmaxQuantizer(), AbsmaxQuantizer()) ptq = ImperativePTQ(config) f_l = [['linear', 'bn']] quant_model = ptq.quantize(model, fuse=True, fuse_list=f_l) quant_h = ptq.quantize(model_h, fuse=True, fuse_list=f_l) for name, layer in quant_model.named_sublayers(): if name in f_l: assert not (isinstance(layer, nn.BatchNorm1D) or isinstance(layer, nn.BatchNorm2D)) out = model(inputs) out_h = model_h(inputs) out_quant = quant_model(inputs) out_quant_h = quant_h(inputs) cos_sim_func = nn.CosineSimilarity(axis=0) print('fuse linear+bn', cos_sim_func(out.flatten(), out_quant.flatten())) print(cos_sim_func(out_h.flatten(), out_quant_h.flatten())) class TestImperativePTQ(unittest.TestCase): """ """ @classmethod def setUpClass(cls): cls.download_path = 'dygraph_int8/download' cls.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + cls.download_path) cls.lenet_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz" cls.lenet_md5 = "953b802fb73b52fae42896e3c24f0afb" seed = 1 np.random.seed(seed) paddle.static.default_main_program().random_seed = seed paddle.static.default_startup_program().random_seed = seed def cache_unzipping(self, target_folder, zip_path): if not os.path.exists(target_folder): cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) os.system(cmd) def download_model(self, data_url, data_md5, folder_name): download(data_url, self.download_path, data_md5) file_name = data_url.split('/')[-1] zip_path = os.path.join(self.cache_folder, file_name) print('Data is downloaded at {0}'.format(zip_path)) data_cache_folder = os.path.join(self.cache_folder, folder_name) self.cache_unzipping(data_cache_folder, zip_path) return data_cache_folder def set_vars(self): config = PTQConfig(AbsmaxQuantizer(), AbsmaxQuantizer()) self.ptq = ImperativePTQ(config) self.batch_num = 10 self.batch_size = 10 self.eval_acc_top1 = 0.95 # the input, output and weight thresholds of quantized op self.gt_thresholds = { 'conv2d_0': [[1.0], [0.37673383951187134], [0.10933732241392136]], 'batch_norm2d_0': [[0.37673383951187134], [0.44249194860458374]], 're_lu_0': [[0.44249194860458374], [0.25804123282432556]], 'max_pool2d_0': [[0.25804123282432556], [0.25804123282432556]], 'linear_0': [[1.7058950662612915], [14.405526161193848], [0.4373355209827423]], 'add_0': [[1.7058950662612915, 0.0], [1.7058950662612915]], } def model_test(self, model, batch_num=-1, batch_size=8): model.eval() test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) eval_acc_top1_list = [] for batch_id, data in enumerate(test_reader()): x_data = np.array([x[0].reshape(1, 28, 28) for x in data]).astype('float32') y_data = np.array([x[1] for x in data]).astype('int64').reshape(-1, 1) img = paddle.to_tensor(x_data) label = paddle.to_tensor(y_data) out = model(img) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) eval_acc_top1_list.append(float(acc_top1.numpy())) if batch_id % 50 == 0: _logger.info("Test | At step {}: acc1 = {:}, acc5 = {:}".format( batch_id, acc_top1.numpy(), acc_top5.numpy())) if batch_num > 0 and batch_id + 1 >= batch_num: break eval_acc_top1 = sum(eval_acc_top1_list) / len(eval_acc_top1_list) return eval_acc_top1 def program_test(self, program_path, batch_num=-1, batch_size=8): exe = paddle.static.Executor(paddle.CPUPlace()) [inference_program, feed_target_names, fetch_targets ] = (paddle.static.load_inference_model(program_path, exe)) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) top1_correct_num = 0. total_num = 0. for batch_id, data in enumerate(test_reader()): img = np.array([x[0].reshape(1, 28, 28) for x in data]).astype('float32') label = np.array([x[1] for x in data]).astype('int64') feed = {feed_target_names[0]: img} results = exe.run(inference_program, feed=feed, fetch_list=fetch_targets) pred = np.argmax(results[0], axis=1) top1_correct_num += np.sum(np.equal(pred, label)) total_num += len(img) if total_num % 50 == 49: _logger.info("Test | Test num {}: acc1 = {:}".format( total_num, top1_correct_num / total_num)) if batch_num > 0 and batch_id + 1 >= batch_num: break return top1_correct_num / total_num def func_ptq(self): start_time = time.time() self.set_vars() # Load model params_path = self.download_model(self.lenet_url, self.lenet_md5, "lenet") params_path += "/lenet_pretrained/lenet.pdparams" model = ImperativeLenet() model_state_dict = paddle.load(params_path) model.set_state_dict(model_state_dict) # Quantize, calibrate and save quant_model = self.ptq.quantize(model) before_acc_top1 = self.model_test(quant_model, self.batch_num, self.batch_size) input_spec = [ paddle.static.InputSpec( shape=[None, 1, 28, 28], dtype='float32') ] with tempfile.TemporaryDirectory(prefix="imperative_ptq_") as tmpdir: save_path = os.path.join(tmpdir, "model") self.ptq.save_quantized_model( model=quant_model, path=save_path, input_spec=input_spec) print('Quantized model saved in {%s}' % save_path) after_acc_top1 = self.model_test(quant_model, self.batch_num, self.batch_size) paddle.enable_static() infer_acc_top1 = self.program_test(save_path, self.batch_num, self.batch_size) paddle.disable_static() # Check print('Before converted acc_top1: %s' % before_acc_top1) print('After converted acc_top1: %s' % after_acc_top1) print('Infer acc_top1: %s' % infer_acc_top1) self.assertTrue( after_acc_top1 >= self.eval_acc_top1, msg="The test acc {%f} is less than {%f}." % (after_acc_top1, self.eval_acc_top1)) self.assertTrue( infer_acc_top1 >= after_acc_top1, msg='The acc is lower after converting model.') end_time = time.time() print("total time: %ss \n" % (end_time - start_time)) def test_ptq(self): with _test_eager_guard(): self.func_ptq() self.func_ptq() class TestImperativePTQfuse(TestImperativePTQ): def func_ptq(self): start_time = time.time() self.set_vars() # Load model params_path = self.download_model(self.lenet_url, self.lenet_md5, "lenet") params_path += "/lenet_pretrained/lenet.pdparams" model = ImperativeLenet() model_state_dict = paddle.load(params_path) model.set_state_dict(model_state_dict) # Quantize, calibrate and save f_l = [['features.0', 'features.1'], ['features.4', 'features.5']] quant_model = self.ptq.quantize(model, fuse=True, fuse_list=f_l) for name, layer in quant_model.named_sublayers(): if name in f_l: assert not (isinstance(layer, nn.BatchNorm1D) or isinstance(layer, nn.BatchNorm2D)) before_acc_top1 = self.model_test(quant_model, self.batch_num, self.batch_size) input_spec = [ paddle.static.InputSpec( shape=[None, 1, 28, 28], dtype='float32') ] with tempfile.TemporaryDirectory(prefix="imperative_ptq_") as tmpdir: save_path = os.path.join(tmpdir, "model") self.ptq.save_quantized_model( model=quant_model, path=save_path, input_spec=input_spec) print('Quantized model saved in {%s}' % save_path) after_acc_top1 = self.model_test(quant_model, self.batch_num, self.batch_size) paddle.enable_static() infer_acc_top1 = self.program_test(save_path, self.batch_num, self.batch_size) paddle.disable_static() # Check print('Before converted acc_top1: %s' % before_acc_top1) print('After converted acc_top1: %s' % after_acc_top1) print('Infer acc_top1: %s' % infer_acc_top1) #Check whether the quant_model is correct after converting. #The acc of quantized model should be higher than 0.95. self.assertTrue( after_acc_top1 >= self.eval_acc_top1, msg="The test acc {%f} is less than {%f}." % (after_acc_top1, self.eval_acc_top1)) #Check the saved infer_model.The acc of infer model #should not be lower than the one of dygraph model. self.assertTrue( infer_acc_top1 >= after_acc_top1, msg='The acc is lower after converting model.') end_time = time.time() print("total time: %ss \n" % (end_time - start_time)) def test_ptq(self): with _test_eager_guard(): self.func_ptq() self.func_ptq() class TestImperativePTQHist(TestImperativePTQ): def set_vars(self): config = PTQConfig(HistQuantizer(), AbsmaxQuantizer()) self.ptq = ImperativePTQ(config) self.batch_num = 10 self.batch_size = 10 self.eval_acc_top1 = 0.98 self.gt_thresholds = { 'conv2d_0': [[0.99853515625], [0.35732391771364225], [0.10933732241392136]], 'batch_norm2d_0': [[0.35732391771364225], [0.4291427868761275]], 're_lu_0': [[0.4291427868761275], [0.2359918110742001]], 'max_pool2d_0': [[0.2359918110742001], [0.25665526917146053]], 'linear_0': [[1.7037603475152991], [14.395224522473026], [0.4373355209827423]], 'add_0': [[1.7037603475152991, 0.0], [1.7037603475152991]], } class TestImperativePTQKL(TestImperativePTQ): def set_vars(self): config = PTQConfig(KLQuantizer(), PerChannelAbsmaxQuantizer()) self.ptq = ImperativePTQ(config) self.batch_num = 10 self.batch_size = 10 self.eval_acc_top1 = 1.0 conv2d_1_wt_thresholds = [ 0.18116560578346252, 0.17079241573810577, 0.1702047884464264, 0.179476797580719, 0.1454375684261322, 0.22981858253479004 ] self.gt_thresholds = { 'conv2d_0': [[0.99267578125], [0.37695913558696836]], 'conv2d_1': [[0.19189296757394914], [0.24514256547263358], [conv2d_1_wt_thresholds]], 'batch_norm2d_0': [[0.37695913558696836], [0.27462541429440535]], 're_lu_0': [[0.27462541429440535], [0.19189296757394914]], 'max_pool2d_0': [[0.19189296757394914], [0.19189296757394914]], 'linear_0': [[1.2839322163611087], [8.957185942414352]], 'add_0': [[1.2839322163611087, 0.0], [1.2839322163611087]], } if __name__ == '__main__': unittest.main()