Neural Networks¶
Base¶
Functions
- 
void hl_shrink_col2feature(const real *dataCol, size_t channels, size_t height, size_t width, size_t blockH, size_t blockW, size_t strideH, size_t strideW, size_t paddingH, size_t paddingW, size_t outputH, size_t outputW, real *dataIm, real alpha = 1.0f, real beta = 0.0f)¶
- Shrink column to feature. - Parameters
- dataCol-- expand data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- blockH-- filter height. 
- blockW-- filter width. 
- strideH-- stride height. 
- strideW-- stride width. 
- paddingH-- padding height. 
- paddingW-- padding width. 
- outputH-- output height. 
- outputW-- output width. 
- dataIm-- output image data. 
- alpha-
- beta-
 
 
- 
void hl_expand_feature2col(const real *dataIm, size_t channels, size_t height, size_t width, size_t blockH, size_t blockW, size_t strideH, size_t strideW, size_t paddingH, size_t paddingW, size_t outputH, size_t outputW, real *dataCol)¶
- Expand feature to column. - Parameters
- dataIm-- input image data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- blockH-- filter height. 
- blockW-- filter width. 
- strideH-- stride height. 
- strideW-- stride width. 
- paddingH-- padding height. 
- paddingW-- padding width. 
- outputH-- output height. 
- outputW-- output width. 
- dataCol-- expand data. 
 
 
- 
void hl_maxpool_forward(int frameCnt, const real *inputData, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *tgtData)¶
- Maximum pool forward. - Parameters
- frameCnt-- batch size of input image. 
- inputData-- input data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- pooledH-- output image height. 
- pooledW-- output image width. 
- sizeX-- size of pooling window. 
- stride-- pooling stride. 
- start-- pooling start. 
- tgtData-- output data. 
 
 
- 
void hl_maxpool_backward(int frameCnt, const real *inputData, const real *outData, const real *outGrad, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *targetGrad, real scaleA, real scaleB)¶
- Maximum pool backward. - Parameters
- frameCnt-- batch size of input image. 
- inputData-- input data. 
- outData-- output data. 
- outGrad-- output grad data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- pooledH-- output image height. 
- pooledW-- output image width. 
- sizeX-- size of pooling window. 
- stride-- pooling stride. 
- start-- pooling start. 
- targetGrad-- output grad. 
- scaleA-- scale. 
- scaleB-- scale. 
 
 
- 
void hl_avgpool_forward(int frameCnt, const real *inputData, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *tgtData)¶
- Averge pool forward. - Parameters
- frameCnt-- batch size of input image. 
- inputData-- input data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- pooledH-- output image height. 
- pooledW-- output image width. 
- sizeX-- size of pooling window. 
- stride-- pooling stride. 
- start-- pooling start. 
- tgtData-- output data. 
 
 
- 
void hl_avgpool_backward(int frameCnt, const real *outGrad, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *backGrad, real scaleA, real scaleB)¶
- Maximum pool backward. - Parameters
- frameCnt-- batch size of input image. 
- outGrad-- input data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- pooledH-- output image height. 
- pooledW-- output image width. 
- sizeX-- size of pooling window. 
- stride-- pooling stride. 
- start-- pooling start. 
- backGrad-- output grad. 
- scaleA-- scale. 
- scaleB-- scale. 
 
 
- 
void hl_CMRNorm_forward(size_t frameCnt, const real *in, real *scale, real *out, size_t channels, size_t height, size_t width, size_t sizeX, real alpha, real beta)¶
- Cross-map-respose normalize forward. - Parameters
- frameCnt-- batch size of input image. 
- in-- input data. 
- scale-- buffer. 
- out-- output data. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- sizeX-- size. 
- alpha-- scale. 
- beta-- scale. 
 
 
- 
void hl_CMRNorm_backward(size_t frameCnt, const real *inV, const real *scale, const real *outV, const real *outDiff, real *inDiff, size_t channels, size_t height, size_t width, size_t sizeX, real alpha, real beta)¶
- Cross-map-respose normalize backward. - Parameters
- frameCnt-- batch size of input image. 
- inV-- input data. 
- scale-- buffer. 
- outV-- output value. 
- outDiff-- output grad. 
- inDiff-- input grad. 
- channels-- number of channel. 
- height-- image height. 
- width-- image width. 
- sizeX-- size. 
- alpha-- scale. 
- beta-- scale. 
 
 
Defines
- 
SIGMOID_THRESHOLD_MIN¶
- sigmoid threshold maximum 
- 
SIGMOID_THRESHOLD_MAX¶
- sigmoid threshold minimum 
- 
namespace hppl¶
- 
namespace hppl¶
- Functions - 
__m256 relu(const __m256 a)¶
 - 
__m256 sigmoid(const __m256 a)¶
 - 
__m256 tanh(const __m256 a)¶
 - 
__m256 linear(const __m256 a)¶
 - 
__m256 relu(const __m256 a, const __m256 b)¶
 - 
__m256 sigmoid(const __m256 a, const __m256 b)¶
 - 
__m256 tanh(const __m256 a, const __m256 b)¶
 - 
__m256 linear(const __m256 a, const __m256 b)¶
 
- 
__m256 
Defines
- 
HL_DEVICE_FUNCTIONS_CUH_¶
- 
namespace hppl
- Functions - 
static __inline__ __device__ double hppl::atomicAdd(double * address, double val)
 
- 
Defines
- 
HL_GPU_FUNCTIONS_CUH_¶