/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/generator/get_expected_kernel_func.h" #include "paddle/fluid/platform/device/gpu/gpu_dnn.h" #include "paddle/phi/kernels/cpu/conv_util.h" namespace paddle { namespace operators { inline int ConvOutputSize(int input_size, int filter_size, int dilation, int padding_1, int padding_2, int stride) { const int dkernel = dilation * (filter_size - 1) + 1; int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1; PADDLE_ENFORCE_GT( output_size, 0, platform::errors::InvalidArgument( "The output's size is expected to be greater than 0. " "But received: output's size is %d. The output's size is computed by " "((input_size + padding_1 + padding_2 - (dilation * (filter_size - " "1) + 1)) / stride + 1), where input_size is %d, padding is " "(%d, %d), filter_size is %d, dilation is %d, stride is %d.", output_size, input_size, padding_1, padding_2, filter_size, dilation, stride)); return output_size; } // This fused conv follows the equation: // y = act ( alpha1 * conv(x) + alpha2 * z + bias ). // here, y is Output, // x is Input, // z is ResidualData, // bias is Bias // When `split_channels` is set, y will be split into multiple outputs, // each output has split_channels[i] number of channels. class Conv2DFusionOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("Input", "(Tensor), input 0 of conv2d op."); AddInput("Filter", "(Tensor), input 1 of conv2d op."); AddOutput("Output", "(Tensor), output 0 of conv2d op."); AddAttr>("strides", "(std::vector), attribute 0 for conv2d op.") .SetDefault({1, 1}); AddAttr>("paddings", "(std::vector), attribute 1 for conv2d op.") .SetDefault({0, 0}); AddAttr("padding_algorithm", "(std::string), attribute 2 for conv2d op.") .SetDefault("EXPLICIT"); AddAttr>("dilations", "(std::vector), attribute 3 for conv2d op.") .SetDefault({1, 1}); AddAttr("groups", "(int), attribute 4 for conv2d op.").SetDefault(1); AddAttr("data_format", "(std::string), attribute 5 for conv2d op.") .SetDefault("NCHW"); AddComment(R"DOC( TODO: Documentation of conv2d op. )DOC"); Apply(); } protected: void Apply() { AddInput("Bias", "(Tensor) Bias to be added to each output of filter application." "The format of output tensor is X (one-dimensional) of size equal" "to the number of output channels. Only used with MKL-DNN.") .AsDispensable(); AddInput("ResidualData", "(Tensor) Tensor with residual data " "to which convolution output will be added." "Used with fuse_residual_connection fusion.") .AsDispensable(); AddAttr( "activation", "The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' " "'relux' , 'tanh', 'band_pass'") .SetDefault("relu"); AddAttr>( "split_channels", "When `split_channels` are set, there will be multiple outputs, the " "output size is equal to the number of `split_channels`.") .SetDefault({}); AddOutput("Outputs", "This Outputs is used when setting `split_channels`." "Usually used to fuse conv with same input and same filter size, " "padding, stride, dilation size.") .AsDuplicable() .AsDispensable(); AddInput("AlgoCache", "The cache of convolution algorithm, a RAW type variable.") .AsDispensable(); AddAttr( "search_times", "The number of exhaustive search times for convolution algorithm.") .SetDefault(-1); AddAttr( "use_cudnn", "(bool, default false) Only used in cudnn kernel, need install cudnn") .SetDefault(true); } }; class Conv2DFusionOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv2DFusion"); OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "Conv2DFusion"); // In some case, attribute data_format is "AnyLayout". std::string data_format = ctx->Attrs().Get("data_format"); // MKL-DNN Kernels are using NCHW order of dims description // so we ignore data_format consideration for MKL-DNN kernel const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) && (data_format == "NHWC" || data_format == "NDHWC"); std::vector output_shape = ComputeOutputShape(ctx, data_format, channel_last); ctx->SetOutputDim("Output", phi::make_ddim(output_shape)); ctx->ShareLoD("Input", "Output"); std::vector split_channels = ctx->Attrs().Get>("split_channels"); if (split_channels.size()) { OP_INOUT_CHECK( ctx->HasOutputs("Outputs"), "Output", "Outputs", "Conv2DFusion"); PADDLE_ENFORCE_EQ( ctx->Outputs("Outputs").size(), split_channels.size(), platform::errors::InvalidArgument( "The number of Output(Outputs) of operator 'Conv2DFusion' is " "expected to be equal to the length of Attr(split_channels). But " "reiceved: the number of Output(Outputs) = %u; the length of " "Attr(split_channels) = %u, the content = [%s].", ctx->Outputs("Outputs").size(), split_channels.size(), phi::make_ddim(split_channels))); int split_channels_sum = 0; std::vector output_shapes(split_channels.size()); for (size_t i = 0; i < split_channels.size(); ++i) { split_channels_sum += split_channels[i]; if (channel_last) { output_shapes[i] = phi::make_ddim({output_shape[0], output_shape[1], output_shape[2], split_channels[i]}); } else { output_shapes[i] = phi::make_ddim({output_shape[0], split_channels[i], output_shape[2], output_shape[3]}); } } int output_channels = output_shape[1]; // for NHWC if (channel_last) output_channels = output_shape[3]; PADDLE_ENFORCE_EQ( split_channels_sum, output_channels, platform::errors::InvalidArgument( "The sum of Attr(split_channels) is expected to be equal to " "the " "total output channels. But received: the sum of " "Attr(split_channels) = %d, the total output channels = %d.", split_channels_sum, output_channels)); ctx->SetOutputsDim("Outputs", output_shapes); } } std::vector ComputeOutputShape(framework::InferShapeContext* ctx, const std::string& data_format, bool channel_last) const { OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv"); OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv"); auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); std::string padding_algorithm = ctx->Attrs().Get("padding_algorithm"); int groups = ctx->Attrs().Get("groups"); std::vector dilations = ctx->Attrs().Get>("dilations"); int dilation_size = dilations.size(); for (int i = 0; i < dilation_size; ++i) { PADDLE_ENFORCE_GT( dilations[i], 0, platform::errors::InvalidArgument( "The dilation of Op(Conv) should be larget than 0, but received " "dilation is %d.", dilations[i])); } PADDLE_ENFORCE_EQ( in_dims.size() == 4 || in_dims.size() == 5, true, platform::errors::InvalidArgument( "The input of Op(Conv) should be a 4-D or 5-D Tensor. But " "received: input's dimension is %u, input's shape is [%s].", in_dims.size(), in_dims)); PADDLE_ENFORCE_EQ( in_dims.size(), filter_dims.size(), platform::errors::InvalidArgument( "The input's dimension and filter's dimension of " "Op(Conv) should be equal. But received: the input's shape is " "[%s], " "the input's dimension is %d; the filter's shape is [%s], " "the filter's dimension is %d.", in_dims, in_dims.size(), filter_dims, filter_dims.size())); int stride_size = strides.size(); for (int i = 0; i < stride_size; ++i) { PADDLE_ENFORCE_GT( strides[i], 0, platform::errors::InvalidArgument( "The stride of Op(Conv) should be larget than 0, but received " "stride is %d.", strides[i])); } PADDLE_ENFORCE_EQ( in_dims.size(), strides.size() + 2U, platform::errors::InvalidArgument( "The difference of input's dimension and Attr(strides)'s " "length must be euqal to 2 for Op(Conv). " "But received: input's dimension is %d, input's shape is [%s]; " "Attr(stride)'s length is %d, Attr(stride) is [%s]; " "difference of input's dimention and Attr(strides)'s length = %u.", in_dims.size(), in_dims, strides.size(), phi::make_ddim(strides), in_dims.size() - stride_size)); const auto input_channels = channel_last ? in_dims[in_dims.size() - 1] : in_dims[1]; PADDLE_ENFORCE_EQ( input_channels, (channel_last ? filter_dims[filter_dims.size() - 1] : filter_dims[1]) * groups, platform::errors::InvalidArgument( "The number of input's channels should be equal to filter's " "channels " "* groups for Op(Conv). But received: the input's channels is %d, " "the input's shape is [%s]; the filter's channels is %d, the " "filter's shape is [%s]; the groups is %d, the data_format is %s. " "The error may come from wrong data_format setting.", input_channels, in_dims, channel_last ? filter_dims[filter_dims.size() - 1] : filter_dims[1], filter_dims, groups, data_format)); PADDLE_ENFORCE_EQ( filter_dims[0] % groups, 0, platform::errors::InvalidArgument( "The number of output's channels (filter's first dimension) of " "Op(Conv) should be divided by groups. But received: " "the output channels is %d, the filter's shape is [%s], " "the groups is %d.", filter_dims[0], filter_dims, groups)); if (ctx->IsRuntime()) { PADDLE_ENFORCE_GT( filter_dims[0], 0, platform::errors::InvalidArgument( "the size of filter at axis 0 should be greater than 0")); } framework::DDim in_data_dims; if (channel_last) { in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1); } else { in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size()); } framework::DDim filter_data_dims; if (channel_last) { filter_data_dims = phi::slice_ddim(filter_dims, 1, filter_dims.size() - 1); } else { filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size()); } std::vector ksize = phi::vectorize(filter_data_dims); phi::UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); std::vector output_shape({in_dims[0]}); if (!channel_last) { output_shape.push_back(filter_dims[0]); } for (int i = 0; i < in_data_dims.size(); ++i) { if ((!ctx->IsRuntime()) && (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) { output_shape.push_back(-1); } else { output_shape.push_back(ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i], paddings[2 * i], paddings[2 * i + 1], strides[i])); } } if (channel_last) { output_shape.push_back(filter_dims[0]); } return output_shape; } phi::KernelKey GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetConvExpectedKernelType(ctx, this); } }; // TODO(qingqing): add gradient operator for conv2d_fusion } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR( conv2d_fusion, ops::Conv2DFusionOp, ops::Conv2DFusionOpMaker, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker); // This op is used by cutlass, conv2d_fusion_cutlass is a intermediate op // produced by conv2d_fusion_layout_transfer_pass. REGISTER_OPERATOR( conv2d_fusion_cutlass, ops::Conv2DFusionOp, ops::Conv2DFusionOpMaker, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker);