# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16 import paddle from paddle.fluid import core from paddle.static import Program, program_guard def arange_wrapper(start, end, step, dtype="float32"): return paddle.arange(start, end, step, dtype) class TestArangeOp(OpTest): def setUp(self): self.op_type = "range" self.init_config() self.inputs = { 'Start': np.array([self.case[0]]).astype(self.dtype), 'End': np.array([self.case[1]]).astype(self.dtype), 'Step': np.array([self.case[2]]).astype(self.dtype), } self.outputs = { 'Out': np.arange(self.case[0], self.case[1], self.case[2]).astype( self.dtype ) } def init_config(self): self.dtype = np.float32 self.python_api = arange_wrapper self.case = (0, 1, 0.2) def test_check_output(self): self.check_output() class TestFloatArangeOp(TestArangeOp): def init_config(self): self.dtype = np.float32 self.python_api = paddle.arange self.case = (0, 5, 1) class TestFloa16ArangeOp(TestArangeOp): def init_config(self): self.dtype = np.float16 self.python_api = paddle.arange self.case = (0, 5, 1) def test_check_output(self): self.check_output() @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not complied with CUDA and not support the bfloat16", ) class TestBFloat16ArangeOp(OpTest): def setUp(self): self.op_type = "range" self.init_config() self.inputs = { 'Start': convert_float_to_uint16(self.start), 'End': convert_float_to_uint16(self.end), 'Step': convert_float_to_uint16(self.step), } self.outputs = { 'Out': convert_float_to_uint16( np.arange(self.start, self.end, self.step) ) } def init_config(self): self.dtype = np.uint16 self.python_api = arange_wrapper self.case = (0, 5, 1) self.start = np.array([self.case[0]]).astype(np.float32) self.end = np.array([self.case[1]]).astype(np.float32) self.step = np.array([self.case[2]]).astype(np.float32) def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place) class TestInt32ArangeOp(TestArangeOp): def init_config(self): self.dtype = np.int32 self.python_api = paddle.arange self.case = (0, 5, 2) class TestFloat64ArangeOp(TestArangeOp): def init_config(self): self.dtype = np.float64 self.python_api = paddle.arange self.case = (10, 1, -2) class TestInt64ArangeOp(TestArangeOp): def init_config(self): self.dtype = np.int64 self.python_api = paddle.arange self.case = (-1, -10, -2) class TestZeroSizeArangeOp(TestArangeOp): def init_config(self): self.dtype = np.int32 self.python_api = paddle.arange self.case = (0, 0, 1) class TestArangeOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): self.assertRaises(TypeError, paddle.arange, 10, dtype='int8') class TestArangeAPI(unittest.TestCase): def test_out(self): with program_guard(Program(), Program()): x1 = paddle.arange(0, 5, 1, 'float32') place = ( paddle.CUDAPlace(0) if core.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) out = exe.run(fetch_list=[x1]) expected_data = np.arange(0, 5, 1).astype(np.float32) self.assertEqual((out == expected_data).all(), True) class TestArangeImperative(unittest.TestCase): def test_out(self): place = ( paddle.CUDAPlace(0) if core.is_compiled_with_cuda() else paddle.CPUPlace() ) paddle.disable_static(place) x1 = paddle.arange(0, 5, 1) x2 = paddle.tensor.arange(5) x3 = paddle.tensor.creation.arange(5) start = paddle.to_tensor(np.array([0], 'float32')) end = paddle.to_tensor(np.array([5], 'float32')) step = paddle.to_tensor(np.array([1], 'float32')) x4 = paddle.arange(start, end, step, 'int64') paddle.enable_static() expected_data = np.arange(0, 5, 1).astype(np.int64) for i in [x1, x2, x3, x4]: self.assertEqual((i.numpy() == expected_data).all(), True) if __name__ == "__main__": unittest.main()