# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import paddle.profiler as profiler class HostPythonNode: def __init__(self, name, type, start_ns, end_ns, process_id, thread_id): self.name = name self.type = type self.start_ns = start_ns self.end_ns = end_ns self.process_id = process_id self.thread_id = thread_id self.children_node = [] self.runtime_node = [] self.device_node = [] class DevicePythonNode: def __init__(self, name, type, start_ns, end_ns, device_id, context_id, stream_id): self.name = name self.type = type self.start_ns = start_ns self.end_ns = end_ns self.device_id = device_id self.context_id = context_id self.stream_id = stream_id class TestProfilerStatistic(unittest.TestCase): def test_statistic_case1(self): root_node = HostPythonNode('Root Node', profiler.TracerEventType.UserDefined, 0, float('inf'), 1000, 1001) profilerstep_node = HostPythonNode('ProfileStep#1', profiler.TracerEventType.ProfileStep, 0, 400, 1000, 1001) dataloader_node = HostPythonNode( 'Dataloader', profiler.TracerEventType.Forward, 5, 15, 1000, 1001) mobilenet_node = HostPythonNode( 'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001) yolonet_node = HostPythonNode( 'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001) userdefined_node = HostPythonNode('Communication Time', profiler.TracerEventType.UserDefined, 100, 110, 1000, 1001) communication_node = HostPythonNode( 'Communication', profiler.TracerEventType.Communication, 105, 110, 1000, 1001) backward_node = HostPythonNode('Gradient Backward', profiler.TracerEventType.Backward, 120, 200, 1000, 1001) optimization_node = HostPythonNode( 'Optimization', profiler.TracerEventType.Optimization, 220, 300, 1000, 1001) conv2d_node = HostPythonNode( 'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001) sync_batch_norm_node = HostPythonNode('sync_batch_norm', profiler.TracerEventType.Operator, 60, 100, 1000, 1001) conv2d_infer_shape = HostPythonNode( 'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25, 30, 1000, 1001) conv2d_compute = HostPythonNode('conv2d::compute', profiler.TracerEventType.OperatorInner, 30, 40, 1000, 1001) conv2d_launchkernel = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35, 1000, 1001) conv2d_MemCpy = HostPythonNode('AsyncMemcpy', profiler.TracerEventType.UserDefined, 35, 40, 1000, 1001) conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy', profiler.TracerEventType.CudaRuntime, 35, 40, 1000, 1001) conv2d_kernel = DevicePythonNode( 'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0) conv2d_memcpy = DevicePythonNode( 'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0) sync_batch_norm_infer_shape = HostPythonNode( 'sync_batch_norm::infer_shape', profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001) sync_batch_norm_compute = HostPythonNode( 'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner, 80, 100, 1000, 1001) sync_batch_norm_launchkernel = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90, 1000, 1001) sync_batch_norm_MemCpy = HostPythonNode( 'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000, 1001) sync_batch_norm_cudaMemCpy = HostPythonNode( 'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000, 1001) sync_batch_norm_kernel = DevicePythonNode( 'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 155, 0, 0, 0) sync_batch_norm_memcpy = DevicePythonNode( 'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200, 0, 0, 1) root_node.children_node.append(profilerstep_node) profilerstep_node.children_node.extend([ dataloader_node, mobilenet_node, yolonet_node, backward_node, optimization_node ]) mobilenet_node.children_node.append(conv2d_node) yolonet_node.children_node.extend( [sync_batch_norm_node, userdefined_node]) userdefined_node.children_node.append(communication_node) conv2d_node.children_node.extend( [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy]) conv2d_compute.runtime_node.append(conv2d_launchkernel) conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy) conv2d_launchkernel.device_node.append(conv2d_kernel) conv2d_cudaMemCpy.device_node.append(conv2d_memcpy) sync_batch_norm_node.children_node.extend([ sync_batch_norm_infer_shape, sync_batch_norm_compute, sync_batch_norm_MemCpy ]) sync_batch_norm_compute.runtime_node.append( sync_batch_norm_launchkernel) sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy) sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel) sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy) thread_tree = {'thread1001': root_node} extra_info = { 'Process Cpu Utilization': '1.02', 'System Cpu Utilization': '0.68' } statistic_data = profiler.profiler_statistic.StatisticData(thread_tree, extra_info) time_range_summary = statistic_data.time_range_summary event_summary = statistic_data.event_summary self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.ProfileStep), 400) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Forward), 100) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Backward), 80) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Optimization), 80) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Operator), 55) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.OperatorInner), 45) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.CudaRuntime), 30) self.assertEqual( time_range_summary.get_gpu_range_sum( 0, profiler.TracerEventType.Kernel), 75) self.assertEqual( time_range_summary.get_gpu_range_sum( 0, profiler.TracerEventType.Memcpy), 60) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.UserDefined), 25) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Communication), 5) self.assertEqual(len(event_summary.items), 2) self.assertEqual(len(event_summary.userdefined_items), 1) self.assertEqual(len(event_summary.model_perspective_items), 3) self.assertEqual(len(event_summary.memory_manipulation_items), 1) self.assertEqual(event_summary.items['conv2d'].cpu_time, 15) self.assertEqual(event_summary.items['conv2d'].gpu_time, 25) self.assertEqual( event_summary.model_perspective_items['Forward'].cpu_time, 100) self.assertEqual( event_summary.model_perspective_items['Forward'].gpu_time, 135) self.assertEqual( event_summary.model_perspective_items['Backward'].gpu_time, 0) self.assertEqual( event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15) self.assertEqual( event_summary.memory_manipulation_items['AsyncMemcpy'].gpu_time, 60) print( profiler.profiler_statistic._build_table( statistic_data, sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')) def test_statistic_case2(self): root_node = HostPythonNode('Root Node', profiler.TracerEventType.UserDefined, 0, float('inf'), 1000, 1001) profilerstep_node = HostPythonNode('ProfileStep#1', profiler.TracerEventType.ProfileStep, 0, 400, 1000, 1001) dataloader_node = HostPythonNode( 'Dataloader', profiler.TracerEventType.Forward, 5, 15, 1000, 1001) mobilenet_node = HostPythonNode( 'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001) yolonet_node = HostPythonNode( 'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001) userdefined_node = HostPythonNode('Communication Time', profiler.TracerEventType.UserDefined, 100, 110, 1000, 1001) reduce_all_launchkernel0 = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 102, 104, 1000, 1001) nccl_reduce_all_kernel0 = DevicePythonNode( 'nccl_reduce_all_kernel', profiler.TracerEventType.Kernel, 105, 120, 0, 0, 2) communication_node = HostPythonNode( 'Communication', profiler.TracerEventType.Communication, 105, 110, 1000, 1001) reduce_all_op1 = HostPythonNode('reduce_all_op1', profiler.TracerEventType.Operator, 105, 108, 1000, 1001) reduce_all_op1_infershape = HostPythonNode( 'reduce_all_op1::infershape', profiler.TracerEventType.OperatorInner, 105, 106, 1000, 1001) reduce_all_launchkernel1 = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 106, 107, 1000, 1001) nccl_reduce_all_kernel1 = DevicePythonNode( 'nccl_reduce_all_kernel', profiler.TracerEventType.Kernel, 130, 150, 0, 0, 2) backward_node = HostPythonNode('Gradient Backward', profiler.TracerEventType.Backward, 120, 200, 1000, 1001) optimization_node = HostPythonNode( 'Optimization', profiler.TracerEventType.Optimization, 220, 300, 1000, 1001) conv2d_node = HostPythonNode( 'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001) sync_batch_norm_node = HostPythonNode('sync_batch_norm', profiler.TracerEventType.Operator, 60, 100, 1000, 1001) conv2d_infer_shape = HostPythonNode( 'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25, 30, 1000, 1001) conv2d_compute = HostPythonNode('conv2d::compute', profiler.TracerEventType.OperatorInner, 30, 40, 1000, 1001) conv2d_launchkernel = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35, 1000, 1001) conv2d_MemCpy = HostPythonNode('AsyncMemcpy', profiler.TracerEventType.UserDefined, 35, 40, 1000, 1001) conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy', profiler.TracerEventType.CudaRuntime, 35, 40, 1000, 1001) conv2d_kernel = DevicePythonNode( 'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0) conv2d_memcpy = DevicePythonNode( 'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0) sync_batch_norm_infer_shape = HostPythonNode( 'sync_batch_norm::infer_shape', profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001) sync_batch_norm_compute = HostPythonNode( 'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner, 80, 100, 1000, 1001) sync_batch_norm_launchkernel = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90, 1000, 1001) sync_batch_norm_MemCpy = HostPythonNode( 'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000, 1001) sync_batch_norm_cudaMemCpy = HostPythonNode( 'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000, 1001) sync_batch_norm_kernel = DevicePythonNode( 'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 300, 0, 0, 0) sync_batch_norm_memcpy = DevicePythonNode( 'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200, 0, 0, 1) reduce_all_node2 = HostPythonNode('reduce_all', profiler.TracerEventType.Operator, 230, 250, 1000, 1001) reduce_all_node2_infershape = HostPythonNode( 'reduce_all_node2::infershape', profiler.TracerEventType.OperatorInner, 231, 232, 1000, 1001) reduce_all_launchkernel2 = HostPythonNode( 'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 235, 240, 1000, 1001) nccl_reduce_all_kernel2 = DevicePythonNode( 'nccl_reduce_all_kernel', profiler.TracerEventType.Kernel, 250, 280, 0, 0, 2) root_node.children_node.append(profilerstep_node) profilerstep_node.children_node.extend([ dataloader_node, mobilenet_node, yolonet_node, backward_node, optimization_node ]) mobilenet_node.children_node.append(conv2d_node) yolonet_node.children_node.extend( [sync_batch_norm_node, userdefined_node]) userdefined_node.children_node.append(communication_node) userdefined_node.runtime_node.append(reduce_all_launchkernel0) reduce_all_launchkernel0.device_node.append(nccl_reduce_all_kernel0) communication_node.children_node.append(reduce_all_op1) reduce_all_op1.children_node.append(reduce_all_op1_infershape) reduce_all_op1.runtime_node.append(reduce_all_launchkernel1) reduce_all_launchkernel1.device_node.append(nccl_reduce_all_kernel1) conv2d_node.children_node.extend( [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy]) conv2d_compute.runtime_node.append(conv2d_launchkernel) conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy) conv2d_launchkernel.device_node.append(conv2d_kernel) conv2d_cudaMemCpy.device_node.append(conv2d_memcpy) sync_batch_norm_node.children_node.extend([ sync_batch_norm_infer_shape, sync_batch_norm_compute, sync_batch_norm_MemCpy ]) sync_batch_norm_compute.runtime_node.append( sync_batch_norm_launchkernel) sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy) sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel) sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy) optimization_node.children_node.append(reduce_all_node2) reduce_all_node2.children_node.append(reduce_all_node2_infershape) reduce_all_node2.runtime_node.append(reduce_all_launchkernel2) reduce_all_launchkernel2.device_node.append(nccl_reduce_all_kernel2) thread_tree = {'thread1001': root_node} extra_info = { 'Process Cpu Utilization': '1.02', 'System Cpu Utilization': '0.68' } statistic_data = profiler.profiler_statistic.StatisticData(thread_tree, extra_info) time_range_summary = statistic_data.time_range_summary event_summary = statistic_data.event_summary distributed_summary = statistic_data.distributed_summary self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.ProfileStep), 400) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Forward), 100) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Backward), 80) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Optimization), 80) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Operator), 78) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.OperatorInner), 47) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.CudaRuntime), 38) self.assertEqual( time_range_summary.get_gpu_range_sum( 0, profiler.TracerEventType.Kernel), 220) self.assertEqual( time_range_summary.get_gpu_range_sum( 0, profiler.TracerEventType.Memcpy), 60) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.UserDefined), 25) self.assertEqual( time_range_summary.get_cpu_range_sum( profiler.TracerEventType.Communication), 5) self.assertEqual( profiler.statistic_helper.sum_ranges( distributed_summary.cpu_communication_range), 25) self.assertEqual( profiler.statistic_helper.sum_ranges( distributed_summary.gpu_communication_range), 65) self.assertEqual( profiler.statistic_helper.sum_ranges( distributed_summary.communication_range), 85) self.assertEqual( profiler.statistic_helper.sum_ranges( distributed_summary.computation_range), 220) self.assertEqual( profiler.statistic_helper.sum_ranges( distributed_summary.overlap_range), 85) self.assertEqual(len(event_summary.items), 4) self.assertEqual(len(event_summary.userdefined_items), 1) self.assertEqual(len(event_summary.model_perspective_items), 3) self.assertEqual(len(event_summary.memory_manipulation_items), 1) self.assertEqual(event_summary.items['conv2d'].cpu_time, 15) self.assertEqual(event_summary.items['conv2d'].gpu_time, 25) self.assertEqual( event_summary.model_perspective_items['Forward'].cpu_time, 100) self.assertEqual( event_summary.model_perspective_items['Forward'].gpu_time, 315) self.assertEqual( event_summary.model_perspective_items['Backward'].gpu_time, 0) self.assertEqual( event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15) self.assertEqual( event_summary.memory_manipulation_items['AsyncMemcpy'].gpu_time, 60) print( profiler.profiler_statistic._build_table( statistic_data, sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')) if __name__ == '__main__': unittest.main()