/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "gtest/gtest.h" #include "paddle/framework/init.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_info.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/elementwise_op_function.h" #include "paddle/operators/math/math_function.h" #include "paddle/platform/device_context.h" namespace paddle { namespace framework { template struct AddFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } }; class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { public: OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("input", "input1 of test op"); AddOutput("output", "output of test op"); AddAttr("use_gpu", "force to use gpu kernel").SetDefault(false); AddComment("This is test op"); } }; class TestOpWithKernel : public OperatorWithKernel { public: using OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext* ctx) const override {} OpKernelType GetExpectedKernelType( const ExecutionContext& ctx) const override { if (Attr("use_gpu")) { VLOG(3) << "force use gpu kernel"; return OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0)); } else { VLOG(3) << "use default kernel"; return OpKernelType(proto::DataType::FP32, ctx.Input("input")->place()); } } }; template class TestKernel : public OpKernel { public: void Compute(const ExecutionContext& ctx) const { std::cout << ctx.op().DebugString() << std::endl; const Tensor* input = ctx.Input("input"); std::cout << "input place:" << input->place() << std::endl; auto* output = ctx.Output("output"); output->Resize(input->dims()); output->mutable_data(ctx.GetPlace()); operators::TransformFunctor, T, DeviceContext> functor( input, input, output, ctx.template device_context(), AddFunctor()); functor.Run(); } }; } // namespace framework } // namespace paddle REGISTER_OP_WITHOUT_GRADIENT( test_op, paddle::framework::TestOpWithKernel, paddle::framework::OpKernelTestProtoAndCheckerMaker); REGISTER_OP_CPU_KERNEL( test_op, paddle::framework::TestKernel); REGISTER_OP_CUDA_KERNEL( test_op, paddle::framework::TestKernel); static void BuildVar(const std::string& param_name, std::initializer_list arguments, paddle::framework::proto::OpDesc::Var* var) { var->set_parameter(param_name); for (auto& arg_name : arguments) { *var->mutable_arguments()->Add() = arg_name; } } TEST(Operator, CPUtoGPU) { using namespace paddle::framework; using namespace paddle::platform; InitDevices(); paddle::framework::Scope scope; paddle::platform::CPUPlace cpu_place; // create an op to run on CPU paddle::framework::proto::OpDesc cpu_op_desc; cpu_op_desc.set_type("test_op"); BuildVar("input", {"IN1"}, cpu_op_desc.add_inputs()); BuildVar("output", {"OUT1"}, cpu_op_desc.add_outputs()); auto cpu_op = paddle::framework::OpRegistry::CreateOp(cpu_op_desc); // prepare input auto* in_t = scope.Var("IN1")->GetMutable(); auto* src_ptr = in_t->mutable_data({2, 3}, CPUPlace()); for (int i = 0; i < 2 * 3; ++i) { src_ptr[i] = static_cast(i); } // get output auto* output = scope.Var("OUT1"); cpu_op->Run(scope, cpu_place); auto* output_ptr = output->Get().data(); for (int i = 0; i < 2 * 3; ++i) { ASSERT_EQ(output_ptr[i], static_cast(i) * 2); } // create an op to run on GPU paddle::framework::proto::OpDesc gpu_op_desc; gpu_op_desc.set_type("test_op"); BuildVar("input", {"OUT1"}, gpu_op_desc.add_inputs()); BuildVar("output", {"OUT2"}, gpu_op_desc.add_outputs()); auto attr = gpu_op_desc.mutable_attrs()->Add(); attr->set_name("use_gpu"); attr->set_type(paddle::framework::proto::AttrType::BOOLEAN); attr->set_b(true); auto gpu_op = paddle::framework::OpRegistry::CreateOp(gpu_op_desc); paddle::platform::CUDAPlace cuda_place(0); // get output auto* output2 = scope.Var("OUT2"); gpu_op->Run(scope, cuda_place); VLOG(3) << "after gpu_op run"; // auto* output2_ptr = output2->Get().data(); DeviceContextPool& pool = DeviceContextPool::Instance(); auto dev_ctx = pool.Get(cuda_place); paddle::framework::Tensor output_tensor; Copy(output2->Get(), paddle::platform::CPUPlace(), *dev_ctx, &output_tensor); dev_ctx->Wait(); float* output2_ptr = output_tensor.data(); for (int i = 0; i < 2 * 3; ++i) { ASSERT_EQ(output2_ptr[i], static_cast(i) * 4); } }